咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged Object Detection"
180 条 记 录,以下是41-50 订阅
排序:
EHAN: An explicitly high-order attention network for accurate camouflaged object detection
收藏 引用
NEUROCOMPUTING 2025年 624卷
作者: Wu, Qingbo Wu, Guanxing Chen, Shengyong Tianjin Univ Technol Key Lab Comp Vis & Syst Minist Educ Tianjin 300384 Peoples R China Tianjin Univ Technol Engn Res Ctr Learning Based Intelligent Syst Minist Educ Tianjin 300384 Peoples R China Tianjin Univ Technol Sch Comp Sci & Engn Tianjin 300384 Peoples R China
Wild animals often change their appearance such as color and textures to seamlessly blend into the surrounding environments to avoid predators and enemies, which poses extreme challenges to the task of camouflaged Obj... 详细信息
来源: 评论
Semantic-aware representations for unsupervised camouflaged object detection
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2025年 107卷
作者: Lu, Zelin Zhao, Xing Xie, Liang Liang, Haoran Liang, Ronghua Zhejiang Univ Technol Coll Comp Sci & Technol 288 Liuhe Rd Hangzhou 310023 Peoples R China
Unsupervised image segmentation algorithms face challenges due to the lack of human annotations. They typically employ representations derived from self-supervised models to generate pseudo-labels for supervising mode... 详细信息
来源: 评论
Bilateral decoupling complementarity learning network for camouflaged object detection
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 314卷
作者: Zhao, Rui Li, Yuetong Zhang, Qing Zhao, Xinyi Shanghai Inst Technol Dept Comp Sci & Informat Engn Shanghai 201418 Peoples R China
Existing camouflaged object detection methods have made impressive achievements, however, the interference from highly similar backgrounds, as well as the indistinguishable object boundary, still hider the detection a... 详细信息
来源: 评论
Multi-level cross-knowledge fusion with edge guidance for camouflaged object detection
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 311卷
作者: Sun, Wei Wang, Qianzhou Tian, Yulong Yang, Xiaobao Kong, Xianguang Dong, Yizhuo Zhang, Yanning Xian Univ Posts & Telecommun Sch Comp Sci & Technol Xian Peoples R China Northwestern Polytech Univ Sch Comp Sci & Engn Xian Peoples R China Xidian Univ Sch Mechanoelect Engn Xian Peoples R China Natl Engn Lab Integrated Aerosp Ground Ocean Big D Xian Peoples R China
camouflaged object detection aims to identify objects that are "perfectly"assimilated into their surroundings, which has a wide range of valuable applications. The key challenge is that there exists high int... 详细信息
来源: 评论
Certainty-guided Reasoning and Refinement Network for camouflaged object detection
Certainty-guided Reasoning and Refinement Network for Camouf...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Lai, Bifan Sun, Meijun Zhao, Junkun Zhou, Yan College of Intelligence and Computing Tianjin University Tianjin China School of Disaster and Emergency Medicine Tianjin University Tianjin China
camouflaged object detection (COD), which aims to segment objects that are highly similar to their background, is a valuable yet challenging task. Due to the interference of clutter and noise in the background, existi... 详细信息
来源: 评论
Rethinking camouflaged object detection via Foreground-Background Interactive Learning
Rethinking Camouflaged Object Detection via Foreground-Backg...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhang, Chenxi Zhang, Qing Wu, Jiayun Faculty of Intelligence Technology Shanghai Institute of Technology Shanghai China
camouflaged object detection focuses on the challenge of segmenting objects that visually blend into their background. The effectiveness of camouflage strategies hinges on how well objects interact with their backgrou... 详细信息
来源: 评论
camouflaged object detection based on context-aware and boundary refinement
收藏 引用
APPLIED INTELLIGENCE 2023年 第19期53卷 22429-22445页
作者: Shi, Caijuan Ren, Bijuan Chen, Houru Zhao, Lin Lin, Chunyu Zhao, Yao North China Univ Sci & Technol Tangshan 063210 Peoples R China Hebei Key Lab Ind Intelligent Percept Tangshan 063210 Peoples R China Beijing Jiaotong Univ Beijing 100044 Peoples R China
camouflaged object detection (COD) has been increasingly studied and the detection performance has been greatly improved based on deep learning models in recent years. However, the context and boundary information hav... 详细信息
来源: 评论
camouflaged object detection via Context-Aware Cross-Level Fusion
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第10期32卷 6981-6993页
作者: Chen, Geng Liu, Si-Jie Sun, Yu-Jia Ji, Ge-Peng Wu, Ya-Feng Zhou, Tao Northwestern Polytech Univ Xian 710072 Peoples R China Sch Comp Sci & Engn Natl Engn Lab Integrated Aerospace Ground Ocean Xian Peoples R China Sch Power & Energy Data Proc Ctr Xian Peoples R China Inner Mongolia Univ Sch Comp Sci Hohhot 010021 Peoples R China Wuhan Univ Artificial Intelligence Inst Sch Comp Sci Wuhan 430072 Peoples R China Minist Educ Key Lab Syst Control & Informat Proc Shanghai 200240 Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation... 详细信息
来源: 评论
camouflaged object detection with Feature Grafting and Distractor Aware
Camouflaged Object Detection with Feature Grafting and Distr...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Song, Yuxuan Li, Xinyue Qi, Lin Ocean Univ China Coll Comp Sci & Technol Qingdao Peoples R China
The task of camouflaged object detection (COD) aims to accurately segment camouflaged objects that integrated into the environment, which is more challenging than ordinary detection as the texture between the target a... 详细信息
来源: 评论
camouflaged object detection VIA STYLE TRANSFER-BASED DATA AUGMENTATION  31
CAMOUFLAGED OBJECT DETECTION VIA STYLE TRANSFER-BASED DATA A...
收藏 引用
2024 International Conference on Image Processing
作者: Lu, Dongni Chen, Jiaxuan Chen, Haiyan Peng, Ziyi Quan, Rong Qin, Jie Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China
Infrared (IR) images can be seen as complementary to visible light (RGB) images, as they can capture accurate targets in low-visibility conditions. However, camouflaged object detection (COD) based on RGB and IR image... 详细信息
来源: 评论