咨询与建议

限定检索结果

文献类型

  • 131 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 183 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 178 篇 工学
    • 143 篇 计算机科学与技术...
    • 97 篇 电气工程
    • 43 篇 软件工程
    • 16 篇 电子科学与技术(可...
    • 16 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 183 篇 camouflaged obje...
  • 31 篇 deep learning
  • 25 篇 object detection
  • 25 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 image segmentati...
  • 12 篇 visualization
  • 12 篇 attention mechan...
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 data mining
  • 6 篇 computer vision
  • 6 篇 feature aggregat...
  • 5 篇 transformers
  • 5 篇 convolution

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 dalian minzu uni...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 wang anzhi
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi

语言

  • 183 篇 英文
检索条件"主题词=Camouflaged Object Detection"
183 条 记 录,以下是51-60 订阅
camouflaged object detection based on context-aware and boundary refinement
收藏 引用
APPLIED INTELLIGENCE 2023年 第19期53卷 22429-22445页
作者: Shi, Caijuan Ren, Bijuan Chen, Houru Zhao, Lin Lin, Chunyu Zhao, Yao North China Univ Sci & Technol Tangshan 063210 Peoples R China Hebei Key Lab Ind Intelligent Percept Tangshan 063210 Peoples R China Beijing Jiaotong Univ Beijing 100044 Peoples R China
camouflaged object detection (COD) has been increasingly studied and the detection performance has been greatly improved based on deep learning models in recent years. However, the context and boundary information hav... 详细信息
来源: 评论
camouflaged object detection via Context-Aware Cross-Level Fusion
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第10期32卷 6981-6993页
作者: Chen, Geng Liu, Si-Jie Sun, Yu-Jia Ji, Ge-Peng Wu, Ya-Feng Zhou, Tao Northwestern Polytech Univ Xian 710072 Peoples R China Sch Comp Sci & Engn Natl Engn Lab Integrated Aerospace Ground Ocean Xian Peoples R China Sch Power & Energy Data Proc Ctr Xian Peoples R China Inner Mongolia Univ Sch Comp Sci Hohhot 010021 Peoples R China Wuhan Univ Artificial Intelligence Inst Sch Comp Sci Wuhan 430072 Peoples R China Minist Educ Key Lab Syst Control & Informat Proc Shanghai 200240 Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China
camouflaged object detection (COD) aims to identify the objects that conceal themselves in natural scenes. Accurate COD suffers from a number of challenges associated with low boundary contrast and the large variation... 详细信息
来源: 评论
camouflaged object detection with Feature Grafting and Distractor Aware
Camouflaged Object Detection with Feature Grafting and Distr...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Song, Yuxuan Li, Xinyue Qi, Lin Ocean Univ China Coll Comp Sci & Technol Qingdao Peoples R China
The task of camouflaged object detection (COD) aims to accurately segment camouflaged objects that integrated into the environment, which is more challenging than ordinary detection as the texture between the target a... 详细信息
来源: 评论
camouflaged object detection VIA STYLE TRANSFER-BASED DATA AUGMENTATION  31
CAMOUFLAGED OBJECT DETECTION VIA STYLE TRANSFER-BASED DATA A...
收藏 引用
2024 International Conference on Image Processing
作者: Lu, Dongni Chen, Jiaxuan Chen, Haiyan Peng, Ziyi Quan, Rong Qin, Jie Nanjing Univ Aeronaut & Astronaut Nanjing Peoples R China
Infrared (IR) images can be seen as complementary to visible light (RGB) images, as they can capture accurate targets in low-visibility conditions. However, camouflaged object detection (COD) based on RGB and IR image... 详细信息
来源: 评论
camouflaged object detection using Multi-Level Feature Cross-Fusion
Camouflaged Object Detection using Multi-Level Feature Cross...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Qiu, Tianchi Li, Xiuhong Li, Songlin Zhou, Chenyu Liu, Kangwei Xinjiang Univ Sch Comp Sci & Technol Urumqi Peoples R China
camouflaged object detection (COD) aims to segment objects that closely resemble their surroundings. Accurately recognizing camouflaged objects in these complex environments is challenging due to factors such as low i... 详细信息
来源: 评论
camouflaged object detection System at the Edge  32
Camouflaged Object Detection System at the Edge
收藏 引用
Conference on Automatic Target Recognition XXXII
作者: Putatunda, Rohan Gangopadhyay, Aryya Erbacher, Robert F. Busart, Carl Univ Maryland Baltimore Cty Baltimore MD 21228 USA US Army Res Lab Adelphi MD USA
Camouflage is the art of deception which is often used in the animal world. It is also used on the battlefield to hide military assets. camouflaged objects hide within their environments by taking on colors and textur... 详细信息
来源: 评论
Double-branch fusion network with a parallel attention selection mechanism for camouflaged object detection
收藏 引用
Science China(Information Sciences) 2023年 第6期66卷 258-266页
作者: Junjiang XIANG Qing PAN Zhengrong ZHANG Songnian FU Yuwen QIN Advanced Institute of Photonics Technology School of Information EngineeringGuangdong University of Technology Guangdong Provincial Key Laboratory of Photonics Information Technology Guangdong University of Technology Guangxi Key Laboratory of Multimedia Communications and Network Technology School of Computer Electronics and InformationGuangxi University
To meet the challenge of camouflaged object detection (COD),which has a high degree of intrinsic similarity between the object and background,this paper proposes a double-branch fusion network(DBFN)with a parallel... 详细信息
来源: 评论
Efficient camouflaged object detection Network Based on Global Localization Perception and Local Guidance Refinement
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第7期34卷 5452-5465页
作者: Hu, Xihang Zhang, Xiaoli Wang, Fasheng Sun, Jing Sun, Fuming Dalian Minzu Univ Sch Informat & Commun Engn Dalian 116600 Peoples R China Jilin Univ Coll Comp Sci & Technol Changchun 120012 Peoples R China
camouflaged object detection (COD) is a challenging visual task due to its complex contour, diverse scales, and high similarity to the background. Existing COD methods encounter two predicaments: One is that they are ... 详细信息
来源: 评论
Learning Discriminative Representations From Cross-Scale Features for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第12期34卷 12756-12769页
作者: Wang, Yongchao Bi, Xiuli Liu, Bo Wei, Yang Li, Weisheng Xiao, Bin Chongqing Univ Posts & Telecommun Dept Comp Sci & Technol Chongqing 400065 Peoples R China
The key that hinders the performance improvement of current camouflaged object detection (COD) models is the lack of discriminability of features at fine granularity. We solve this problem from two complementary persp... 详细信息
来源: 评论
Decoupling and Integration Network for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2024年 26卷 7114-7129页
作者: Zhou, Xiaofei Wu, Zhicong Cong, Runmin Hangzhou Dianzi Univ Sch Automat Hangzhou 310018 Peoples R China Shandong Univ Sch Control Sci & Engn Jinan 250061 Peoples R China
Recently, camouflaged object detection (COD), which suffers from numerous challenges such as low contrast between camouflaged objects and background and large variations of camouflaged object appearances, has received... 详细信息
来源: 评论