咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged Object Detection"
180 条 记 录,以下是61-70 订阅
排序:
Frequency-aware camouflaged object detection
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2023年 第2期19卷 1-16页
作者: Lin, Jiaying Tan, Xin Xu, Ke Ma, Lizhuang Lau, Rynsonw. H. City Univ Hong Kong Hong Kong Peoples R China East China Normal Univ Shanghai Peoples R China Shanghai Jiao Tong Univ Shanghai Peoples R China
camouflaged object detection (COD) is important as it has various potential applications. Unlike salient object detection (SOD), which tries to identify visually salient objects, COD tries to detect objects that are v... 详细信息
来源: 评论
FindNet: Can You Find Me? Boundary-and-Texture Enhancement Network for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 6396-6411页
作者: Li, Peng Yan, Xuefeng Zhu, Hongwei Wei, Mingqiang Zhang, Xiao-Ping Qin, Jing Nanjing Univ Aeronaut & Astronaut Sch Comp Sci & Technol Nanjing 210016 Peoples R China Ryerson Univ Dept Elect Comp & Biomed Engn Toronto ON M5B 2K3 Canada Hong Kong Polytech Univ Sch Nursing Hong Kong Peoples R China
camouflaged objects share very similar colors but have different semantics with the surroundings. Cognitive scientists observe that both the global contour (i.e., boundary) and the local pattern (i.e., texture) of cam... 详细信息
来源: 评论
FRBNet: feature-iterative reinforcement and boundary-directed network for camouflaged object detection
收藏 引用
MULTIMEDIA SYSTEMS 2024年 第5期30卷 1-19页
作者: Liu, Yitong Zhang, Jindong Wang, Yiming Jin, Jingyi Sun, Wenyue Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China
camouflaged object detection (COD) aims to segment objects blending into their surroundings. Existing studies are impeded by noise interference in shallow layers and insufficient exploration of features. This poses ch... 详细信息
来源: 评论
A Universal Multi-View Guided Network for Salient object and camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第11期34卷 11184-11197页
作者: Song, Xiaogang Zhang, Pengfei Lu, Xiaofeng Hei, Xinhong Liu, Rongrong Xian Univ Technol Sch Comp Sci & Engn Xian 710048 Peoples R China Univ Shaanxi Prov Engn Res Ctr Human Machine Integrat Intelligent R Xian 710048 Peoples R China Fourth Mil Med Univ Dept Dermatol Xijing Hosp Xian 710032 Peoples R China
Salient object detection and camouflaged object detection have attracted increasing attention due to their significant practical applications. While these two domains share similarities in recognition methods and obje... 详细信息
来源: 评论
Boundary enhancement and refinement network for camouflaged object detection
收藏 引用
MACHINE VISION AND APPLICATIONS 2024年 第5期35卷 107-107页
作者: Xia, Chenxing Cao, Huizhen Gao, Xiuju Ge, Bin Li, Kuan-Ching Fang, Xianjin Zhang, Yan Liang, Xingzhu Anhui Univ Sci & Technol Coll Comp Sci & Engn Huainan 232001 Peoples R China Anhui Univ Sci & Technol Affiliated Hosp 1 Huainan Peoples Hosp 1 Huainan Anhui Peoples R China Anhui Purvar Bigdata Technol Co Ltd Huainan 232001 Peoples R China Anhui Univ Sci & Technol Coll Elect & Informat Engn Huainan Anhui Peoples R China Providence Univ Dept Comp Sci & Informat Engn Taiwan Peoples R China Anhui Univ Sch Elect & Informat Engn Hefei Anhui Peoples R China Anhui Univ Sci & Technol Inst Environm Friendly Mat & Occupat Hlth Wuhu Anhui Peoples R China
camouflaged object detection aims to locate and segment objects accurately that conceal themselves well in the environment. Despite the advancements in deep learning methods, prevalent issues persist, including coarse... 详细信息
来源: 评论
Deep Texton-Coherence Network for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2023年 25卷 5155-5165页
作者: Zhai, Wei Cao, Yang Xie, HaiYong Zha, Zheng-Jun Univ Sci & Technol China Dept Informat Sci & Technol Hefei 230000 Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230022 Anhui Peoples R China
camouflaged object detection is a challenging visual task since the appearance and morphology of foreground objects and background regions are highly similar in nature. Recent CNN-based studies gradually integrated th... 详细信息
来源: 评论
SDRNet: camouflaged object detection with independent reconstruction of structure and detail
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2024年 299卷
作者: Guan, Juwei Fang, Xiaolin Zhu, Tongxin Qian, Weiqi Southeast Univ Sch Comp Sci & Engn Nanjing 211189 Jiangsu Peoples R China Southeast Univ Key Lab Comp Network & Informat Integrat Minist Educ Dhaka Peoples R China
The simultaneous reconstruction of structure and detail is a prevalent strategy in camouflaged object detection. However, the reconstruction features required for structure and detail exhibit disparities, a facet over... 详细信息
来源: 评论
Rethinking camouflaged object detection: Models and Datasets
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2022年 第9期32卷 5708-5724页
作者: Bi, Hongbo Zhang, Cong Wang, Kang Tong, Jinghui Zheng, Feng Northeast Petr Univ Dept Elect Informat Engn Daqing 163318 Peoples R China Northeast Petr Univ Elect Engn Informat Dept Daqing 163318 Peoples R China Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Peoples R China
camouflaged object detection (COD) is an emerging visual detection task, which aims to locate and distinguish the disguised target in complex backgrounds by imitating the human visual detection system. Recently, COD h... 详细信息
来源: 评论
Integrating Part-object Relationship and Contrast for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2021年 16卷 5154-5166页
作者: Liu, Yi Zhang, Dingwen Zhang, Qiang Han, Jungong Changzhou Univ Sch Comp Sci & Artificial Intelligence Aliyun Sch Big Data Changzhou 213164 Jiangsu Peoples R China Changzhou Univ Sch Software Changzhou 213164 Jiangsu Peoples R China Northwestern Polytech Univ Sch Automat Xian 710071 Shaanxi Peoples R China Xidian Univ Sch Mechanoelect Engn Xian 710071 Shaanxi Peoples R China Aberystwyth Univ Dept Comp Sci Aberystwyth SY23 3DB Dyfed Wales
object detectors that solely rely on image contrast are struggling to detect camouflaged objects in images because of the high similarity between camouflaged objects and their surroundings. To address this issue, in t... 详细信息
来源: 评论
Depth context aggregation network for camouflaged object detection
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2024年 第31期83卷 75689-75708页
作者: Liu, Xiaogang Song, Shuang Nanjing Tech Univ Coll Comp & Informat Engn Nanjing 211800 Peoples R China
camouflaged object detection (COD) intends to find concealed objects hidden in the surroundings. COD is challenging for it has to discriminate the minor difference between foreground and background. In most existing m... 详细信息
来源: 评论