咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged Object Detection"
180 条 记 录,以下是71-80 订阅
排序:
Feature-aware and iterative refinement network for camouflaged object detection
收藏 引用
VISUAL COMPUTER 2024年 第7期41卷 4741-4758页
作者: Ge, Yanliang Ren, Junchao Zhang, Cong He, Min Bi, Hongbo Zhang, Qiao Northeast Petr Univ Sch Elect Informat Engn Daqing 163000 Peoples R China China Mobile Commun Grp Heilongjiang Co Ltd Daqing Branch Daqing 163000 Peoples R China China Univ Petr East China Sch Comp Sci & Technol Qingdao 266580 Peoples R China
camouflaged object detection (COD) is engineered to identify objects using visual camouflage techniques that seamlessly blend with the background. Although the existing methods have achieved good performance, it is st... 详细信息
来源: 评论
Ternary symmetric fusion network for camouflaged object detection
收藏 引用
APPLIED INTELLIGENCE 2023年 第21期53卷 25216-25231页
作者: Deng, Yangyang Ma, Jianxin Li, Yajun Zhang, Min Wang, Li Henan Univ Sch Artificial Intelligence Zhengzhou 450046 Peoples R China Henan Univ Eurasia Int Sch Kaifeng 475001 Peoples R China
Camouflage object detection (COD) is designed to locate objects that are "seamlessly" embedded in the surrounding environment. camouflaged object detection is a challenging task due to the high intrinsic sim... 详细信息
来源: 评论
MSCAF-Net: A General Framework for camouflaged object detection via Learning Multi-Scale Context-Aware Features
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第9期33卷 4934-4947页
作者: Liu, Yu Li, Haihang Cheng, Juan Chen, Xun Hefei Univ Technol Dept Biomed Engn Hefei 230009 Peoples R China Hefei Univ Technol Anhui Prov Key Lab Measuring Theory & Precis Instr Hefei 230009 Peoples R China Univ Sci & Technol China Dept Elect Engn & Informat Sci Hefei 230026 Peoples R China
The aim of camouflaged object detection (COD) is to find objects that are hidden in their surrounding environment. Due to the factors like low illumination, occlusion, small size and high similarity to the background,... 详细信息
来源: 评论
Deep Texture-Aware Features for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第3期33卷 1157-1167页
作者: Ren, Jingjing Hu, Xiaowei Zhu, Lei Xu, Xuemiao Xu, Yangyang Wang, Weiming Deng, Zijun Heng, Pheng-Ann South China Univ Technol Sch Comp Sci & Engn Guangzhou 510640 Peoples R China Chinese Univ Hong Kong Dept Comp Sci & Engn Hong Kong Peoples R China Hong Kong Univ Sci & Technol Guangzhou Thrust Robot & Autonomous Syst ROAS Guangzhou 511400 Guangdong Peoples R China Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangdong Key Lab Big Data & Intelligent Robot Minist Educ Guangzhou 510640 Peoples R China South China Univ Technol State Key Lab Subtrop Bldg Sci Guangzhou 510640 Peoples R China South China Univ Technol Prov Key Lab Computat Intelligence & Cyberspace In Guangzhou 510640 Peoples R China Hong Kong Metropolitan Univ Sch Sci & Technol Hong Kong Peoples R China
camouflaged object detection is a challenging task that aims to identify objects having similar texture to the surroundings. This paper presents to amplify the subtle texture difference between camouflaged objects and... 详细信息
来源: 评论
Efficient camouflaged object detection via Progressive Refinement Network
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 231-235页
作者: Zhang, Dongdong Wang, Chunping Fu, Qiang Army Engn Univ PLA Shijiazhuang Campus Shijiazhaung 050003 Peoples R China
camouflaged object detection (COD) aims to identify objects that are perfectly concealed in their surroundings and has attracted increasing attention in recent years. The challenge with COD is the intrinsic similarity... 详细信息
来源: 评论
FINet: Frequency Injection Network for Lightweight camouflaged object detection
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2024年 31卷 526-530页
作者: Liang, Weiyun Wu, Jiesheng Wu, Yanfeng Mu, Xinyue Xu, Jing Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China Zhejiang Lab Dept Artificial Intelligence Hangzhou 311121 Peoples R China
Existing camouflaged object detection (COD) methods typically have large model parameters and computations, hindering their deployment in real-world applications. Although using lightweight backbones can help alleviat... 详细信息
来源: 评论
Mask-and-Edge Co-Guided Separable Network for camouflaged object detection
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2023年 30卷 748-752页
作者: Wu, Jiesheng Liang, Weiyun Hao, Fangwei Xu, Jing Nankai Univ Coll Artificial Intelligence Tianjin 300350 Peoples R China
camouflaged object detection (COD) involves segmenting objects that share similar patterns, such as color and texture, with their surroundings. Current methods typically employ multiple well-designed modules or rely o... 详细信息
来源: 评论
Depth awakens: A depth-perceptual attention fusion network for RGB-D camouflaged object detection
收藏 引用
IMAGE AND VISION COMPUTING 2024年 143卷
作者: Liu, Xinran Qi, Lin Song, Yuxuan Wen, Qi Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China
camouflaged object detection (COD) presents a persistent challenge in accurately identifying objects that seamlessly blend into their surroundings. However, most existing COD models overlook the fact that visual syste... 详细信息
来源: 评论
Mscnet: Mask stepwise calibration network for camouflaged object detection
收藏 引用
JOURNAL OF SUPERCOMPUTING 2024年 第16期80卷 24718-24737页
作者: Du, Haishun Zhang, Minghao Zhang, Wenzhe Qiao, Kangyi Henan Univ Sch Artificial Intelligence Zhengzhou 450046 Peoples R China Int Joint Res Lab Cooperat Vehicular Networks Hena Zhengzhou 450046 Peoples R China
camouflaged object detection (COD) aims to accurately segment camouflaged objects blending into the environment and is a challenging task. Most existing deep learning-based COD methods do not explicitly enhance the re... 详细信息
来源: 评论
Hierarchical Graph Interaction Transformer With Dynamic Token Clustering for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 5936-5948页
作者: Yao, Siyuan Sun, Hao Xiang, Tian-Zhu Wang, Xiao Cao, Xiaochun Beijing Univ Posts & Telecommun Sch Comp Sci Natl Pilot Software Engn Sch Beijing 100876 Peoples R China Incept Inst Artificial Intelligence Abu Dhabi U Arab Emirates G42 Bayanat Abu Dhabi U Arab Emirates Beihang Univ Sch Software Beijing Peoples R China Sun Yat Sen Univ Sch Cyber Sci & Technol Shenzhen Campus Shenzhen 518107 Peoples R China
camouflaged object detection (COD) aims to identify the objects that seamlessly blend into the surrounding backgrounds. Due to the intrinsic similarity between the camouflaged objects and the background region, it is ... 详细信息
来源: 评论