咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged object detection"
180 条 记 录,以下是1-10 订阅
排序:
camouflaged object detection with Adaptive Partition and Background Retrieval
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 1-17页
作者: Yin, Bowen Zhang, Xuying Liu, Li Cheng, Ming-Ming Liu, Yongxiang Hou, Qibin Nankai Univ VCIP CS Tianjin Peoples R China NUDT Coll Elect Sci & Technol Changsha Peoples R China
Recent works confirm the importance of local details for identifying camouflaged objects. However, how to identify the details around the target objects via background cues lacks in-depth study. In this paper, we take... 详细信息
来源: 评论
camouflaged object detection via boundary refinement
收藏 引用
MULTIMEDIA SYSTEMS 2025年 第1期31卷 1-20页
作者: Zhang, Miaohui Shen, Chenxing Deng, Yangyang Wang, Li Henan Univ Sch Artificial Intelligence Zhengzhou 450046 Peoples R China Henan Univ Eurasia Int Sch Kaifeng 475001 Peoples R China
In camouflaged object detection (COD), wholly and accurately segmenting the foreground from the background is a major focus of research. However, the similarity in color and texture between foreground targets and the ... 详细信息
来源: 评论
camouflaged object detection Based on Feature Aggregation and Global Semantic Learning  7th
Camouflaged Object Detection Based on Feature Aggregation an...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Wang, Kuan Li, Xiuhong Li, Boyuan Li, Songlin Wei, Zijun Wan, Lining Xinjiang Univ Sch Informat Sci & Engn Urumqi Xinjiang Peoples R China Xinjiang Key Lab Signal Detect & Proc Urumqi Xinjiang Peoples R China
In camouflage object detection (COD), a large amount of contextual information is usually required because the object is very similar to its surrounding environment. However, due to the current problems of insufficien... 详细信息
来源: 评论
camouflaged object detection Based on Localization Guidance and Multi-scale Refinement  31st
Camouflaged Object Detection Based on Localization Guidance ...
收藏 引用
31st International Conference on Multimedia Modeling
作者: Wang, Jinyang Wu, Wei Inner Mongolia Univ Hohhot Peoples R China
camouflaged object detection (COD) aims to visually segment camouflaged objects that blend into their surrounding environment. The problems of inaccurate object localization and lack of detailed information necessary ... 详细信息
来源: 评论
camouflaged object detection via Scale-Feature Attention and Type-Feature Attention  7th
Camouflaged Object Detection via Scale-Feature Attention and...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Liu, Yi Meng, Hui Changzhou Univ Sch Comp Sci & Artificial Intelligence Aliyun Sch Big Data Changzhou Peoples R China Changzhou Univ Sch Software Changzhou Peoples R China
camouflaged object detection targets at identifying and segmenting objects hidden in the surroundings. Due to the various shapes and sizes, and highly non-discriminative features of camouflaged objects, it is a challe... 详细信息
来源: 评论
COMPrompter: reconceptualized segment anything model with multiprompt network for camouflaged object detection
收藏 引用
Science China(Information Sciences) 2025年 第1期68卷 189-203页
作者: Xiaoqin ZHANG Zhenni YU Li ZHAO Deng-Ping FAN Guobao XIAO Zhejiang Province Key Laboratory of Intelligent Informatics for Safety and Emergency Wenzhou University Nankai International Advanced Research Institute (SHENZHEN FUTIAN) College of Computer Science Nankai University School of Computer Science and Technology Tongji University
We rethink the segment anything model(SAM) and propose a novel multiprompt network called COMPrompter for camouflaged object detection(COD). SAM has zero-shot generalization ability beyond other models and can provide... 详细信息
来源: 评论
Dynamic adaptive scaling network for camouflaged object detection
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2025年 第1期19卷 1-9页
作者: Wang, Lili Ruan, Kang Yan, Pu Zhao, Yang Wang, Xu Anhui Jianzhu Univ Sch Elect & Informat Engn Hefei 230601 Anhui Peoples R China
Recently, accurately segmenting objects from backgrounds has become a significant challenge for camouflaged object detection. Currently, traditional single-view approaches have limitations in predicting the boundary o... 详细信息
来源: 评论
Multi-task information propagation network for camouflaged object detection
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 162卷
作者: Zhao, Fei Lou, Wenzhong Feng, Hengzhen Ding, Nanxi Li, Chenglong Ma, Wenlong Beijing Inst Technol Sch Mechatron Engn Beijing 100081 Peoples R China
camouflaged object detection (COD) aims to discover camouflaged objects embedded in the background. However, most existing COD methods focus solely on extracting single-task features for inference, and rely on relativ... 详细信息
来源: 评论
When CNN meet with ViT: decision-level feature fusion for camouflaged object detection
收藏 引用
VISUAL COMPUTER 2025年 第6期41卷 3957-3972页
作者: Yue, Guowen Jiao, Ge Li, Chen Xiang, Jiahao Hengyang Normal Univ Coll Comp Sci & Technol Hengyang 421002 Peoples R China Hengyang Normal Univ Hunan Prov Key Lab Intelligent Informat Proc & App Hengyang 421002 Peoples R China
Despite the significant advancements in camouflaged object detection achieved by convolutional neural network (CNN) methods and vision transformer (ViT) methods, both have limitations. CNN-based methods fail to explor... 详细信息
来源: 评论
IRFNet: Cognitive-Inspired Iterative Refinement Fusion Network for camouflaged object detection
收藏 引用
SENSORS 2025年 第5期25卷 1555-1555页
作者: Li, Guohan Wang, Jingxin Wei, Jianming Xu, Zhengyi Chinese Acad Sci Shanghai Adv Res Inst Shanghai 201210 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China
camouflaged object detection (COD) aims to identify objects that are intentionally concealed within their surroundings through appearance, texture, or pattern adaptations. Despite recent advances, extreme object-backg... 详细信息
来源: 评论