咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged object detection"
180 条 记 录,以下是31-40 订阅
排序:
Key object detection: Unifying Salient and camouflaged object detection Into One Task  7th
Key Object Detection: Unifying Salient and Camouflaged Objec...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yin, Pengyu Fu, Keren Zhao, Qijun Sichuan Univ Coll Comp Sci Chengdu Peoples R China Sichuan Univ Natl Key Lab Fundamental Sci Synthet Vis Chengdu Peoples R China
Visual salient object detection (SOD) aims to discover eye-catching salient objects, while camouflaged object detection (COD) seeks to segment objects that are visually hidden in their surrounding environment. In this... 详细信息
来源: 评论
CAMFNet: complex camouflaged object detection via context-aware and adaptive multilevel feature fusion network
收藏 引用
VISUAL COMPUTER 2025年 1-16页
作者: Zhou, Bingqin Li, Xionglong Li, Miaoqing Yang, Kun Li, Wenyang Xu, Jing Hangzhou Dianzi Univ Sch Comp Sci & Technol Hangzhou 310018 Peoples R China Hangzhou Dianzi Univ Sch Mat & Environm Engn Hangzhou 310018 Peoples R China Key Lab Brain Machine Collaborat Intelligence Zhej Hangzhou 310018 Peoples R China Zhejiang Gongshang Univ Sch Stat & Math Hangzhou 310018 Peoples R China
camouflaged object detection (COD) aims to identify and segment camouflaged objects hidden in the environment. Previous methods based on CNN and Transformer still struggle to cope with more challenging scenes such as ... 详细信息
来源: 评论
Attention and Boundary Induced Feature Refinement Network for camouflaged object detection  7th
Attention and Boundary Induced Feature Refinement Network fo...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Zhong, Junmin Wang, Anzhi Guizhou Normal Univ Sch Big Data & Comp Sci Guiyang 550025 Peoples R China
The intrinsic similarity between camouflaged objects and background environment makes camouflaged object detection (COD) task more challenging than traditional object detection task. Since the boundary of the camoufla... 详细信息
来源: 评论
ECLNet: A Compact Encoder-Decoder Network for Efficient camouflaged object detection  7th
ECLNet: A Compact Encoder-Decoder Network for Efficient Camo...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yang, Longwu Chen, Haiyan Lu, Dongni Qin, Jie Nanjing Univ Aeronaut & Astronaut Nanjing 210016 Peoples R China
camouflaged object detection (COD) is a valuable yet challenging task due to the resemblance between target objects and their surroundings. Existing methods have made impressive progress on COD by focusing on accurate... 详细信息
来源: 评论
Semi-Supervised camouflaged object detection: Multi Information Fusion Combined with Adaptive Receptive Field Selection Network  7th
Semi-Supervised Camouflaged Object Detection: Multi Informat...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Yang, Guang Xiao, Feng Liu, Ruyu Zhang, Jiawei Zhang, Jianhua Chen, Shengyong Tianjin Univ Technol Tianjin 300380 Peoples R China Hangzhou Normal Univ Hangzhou 311121 Peoples R China
camouflaged object detection is focused on segmenting objects concealed within their surroundings. This technology can be applied in various fields such as medical image analysis, wildlife conservation, autonomous dri... 详细信息
来源: 评论
camouflaged object detection with CNN-Transformer Harmonization and Calibration
Camouflaged Object Detection with CNN-Transformer Harmonizat...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Zhao, Yilin Zhang, Qing Li, Yuetong College of Information Engineering Shanghai Institute of Technology Shanghai China
camouflaged object detection (COD) aims to segment objects that visually blend into their surroundings. However, the subtle differences between camouflaged objects and the background make this task highly challenging.... 详细信息
来源: 评论
camouflaged object detection via Neural Architecture Search
Camouflaged Object Detection via Neural Architecture Search
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Li, Xin Fu, Keren Zhao, Qijun College of Computer Science Sichuan University Chengdu China
The core challenge in camouflaged object detection (COD) is identifying objects that blend seamlessly with their surroundings. Existing methods emulate the strategies biological organisms break camouflage by manually ... 详细信息
来源: 评论
Stealth sight: A multi perspective approach for camouflaged object detection
收藏 引用
IMAGE AND VISION COMPUTING 2025年 157卷
作者: Domnic, S. Jayanthan, K. S. Natl Inst Technol Tiruchirappalli Tamil Nadu India
camouflaged object detection (COD) is a challenging task due to the inherent similarity between objects and their surroundings. This paper introduces Stealth Sight, a novel framework integrating multi-view feature fus... 详细信息
来源: 评论
When super-resolution meets camouflaged object detection: A comparison study
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2025年 253卷
作者: Wen, Juan Cheng, Shupeng Hou, Weiyan Van Gool, Luc Timofte, Radu Zhengzhou Univ Sch Informat Engn Zhengzhou 450001 Peoples R China Swiss Fed Inst Technol Comp Vis Lab D ITET CH-8092 Zurich Switzerland Univ Southern Calif Viterbi Sch Engn Los Angeles CA 90089 USA Sofia Univ KU Leuven Proc Speech & Images PSI B-3000 Leuven Belgium Sofia Univ INSAIT Sofia 1784 Bulgaria Univ Wurzburg Comp Vis Lab CAIDAS & IFI D-97070 Wurzburg Germany
Super-resolution (SR) and camouflage object detection (COD) are two prominent topics in the field of computer vision, with various joint applications. However, in previous work, these two areas were often studied in i... 详细信息
来源: 评论
Enhancing camouflaged object detection through contrastive learning and data augmentation techniques
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 141卷
作者: Guo, Cunhan Huang, Heyan Univ Chinese Acad Sci Sch Emergency Management Sci & Engn 1 Yanqihu East Rd Beijing 101400 Peoples R China Beijing Inst Technol Southeast Acad Informat Technol 1998 Licheng Middle Ave Putian 351100 Fujian Peoples R China Beijing Inst Technol Sch Comp Sci & Technol 5 Zhongguancun South St Beijing 101400 Peoples R China
camouflaged object detection (COD) aims to locate and segment objects that blend into their surroundings, presenting significant challenges due to the high similarity between the objects and their background. This wor... 详细信息
来源: 评论