咨询与建议

限定检索结果

文献类型

  • 128 篇 期刊文献
  • 52 篇 会议

馆藏范围

  • 180 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 170 篇 工学
    • 136 篇 计算机科学与技术...
    • 89 篇 电气工程
    • 38 篇 软件工程
    • 11 篇 电子科学与技术(可...
    • 11 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 测绘科学与技术
    • 3 篇 网络空间安全
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 交通运输工程
    • 2 篇 环境科学与工程(可...
    • 2 篇 安全科学与工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
  • 23 篇 理学
    • 16 篇 物理学
    • 5 篇 生物学
    • 4 篇 化学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 12 篇 医学
    • 9 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 农学

主题

  • 180 篇 camouflaged obje...
  • 31 篇 deep learning
  • 24 篇 object detection
  • 24 篇 feature extracti...
  • 14 篇 feature fusion
  • 12 篇 attention mechan...
  • 11 篇 image segmentati...
  • 11 篇 visualization
  • 11 篇 semantics
  • 11 篇 convolutional ne...
  • 9 篇 salient object d...
  • 8 篇 task analysis
  • 8 篇 decoding
  • 7 篇 image edge detec...
  • 6 篇 transformer
  • 6 篇 computer vision
  • 5 篇 transformers
  • 5 篇 convolution
  • 5 篇 data mining
  • 5 篇 cross-level feat...

机构

  • 5 篇 northeast petr u...
  • 5 篇 nanjing univ sci...
  • 4 篇 yangzhou univ sc...
  • 4 篇 shanghai inst te...
  • 4 篇 china univ petr ...
  • 4 篇 jilin univ coll ...
  • 3 篇 hangzhou dianzi ...
  • 3 篇 china mobile com...
  • 3 篇 xinjiang univ sc...
  • 3 篇 northeast petr u...
  • 3 篇 henan univ sch a...
  • 3 篇 southeast univ s...
  • 3 篇 nankai univ coll...
  • 3 篇 cent south univ ...
  • 3 篇 jilin univ key l...
  • 3 篇 ningbo univ fac ...
  • 3 篇 xidian univ sch ...
  • 3 篇 hong kong polyte...
  • 2 篇 college of compu...
  • 2 篇 minist educ key ...

作者

  • 11 篇 bi hongbo
  • 8 篇 li xiuhong
  • 8 篇 zhang qing
  • 8 篇 zhang cong
  • 7 篇 zhang qiao
  • 7 篇 li songlin
  • 7 篇 wang xin
  • 6 篇 ge yanliang
  • 5 篇 li boyuan
  • 4 篇 xu jing
  • 4 篇 hu xiaoguang
  • 4 篇 liu kangwei
  • 4 篇 zhao yilin
  • 4 篇 chen tianyou
  • 4 篇 tong jinghui
  • 4 篇 he min
  • 4 篇 li yuetong
  • 4 篇 chen shuhan
  • 4 篇 qiu tianchi
  • 4 篇 ren junchao

语言

  • 180 篇 英文
检索条件"主题词=Camouflaged object detection"
180 条 记 录,以下是81-90 订阅
排序:
Dynamic interactive refinement network for camouflaged object detection
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2024年 第7期36卷 3433-3446页
作者: Sun, Yaoqi Ma, Lidong Shou, Peiyao Wen, Hongfa Gao, Yuhan Liu, Yixiu Yan, Chenggang Yin, Haibing Hangzhou Dianzi Univ Hangzhou 310018 Peoples R China Hangzhou Dianzi Univ Lishui Inst Lishui 323000 Peoples R China
Automatically identifying objects similar to the surroundings is a complex and difficult task in real-world scenarios. In addition to the high intrinsic similarity between camouflaged objects and their backgrounds, th... 详细信息
来源: 评论
A Cross-Level Iterative Subtraction Network for camouflaged object detection
收藏 引用
APPLIED SCIENCES-BASEL 2024年 第17期14卷 8063页
作者: Hu, Tongtong Zhang, Chao Lyu, Xin Sun, Xiaowen Chen, Shangjing Zeng, Tao Chen, Jiale Hohai Univ Coll Comp Sci & Software Engn Nanjing 211100 Peoples R China Minist Water Resources Informat Ctr Beijing 100053 Peoples R China Hohai Univ Key Lab Water Big Data Technol Minist Water Resources Nanjing 211100 Peoples R China Water Resources Serv Ctr Jiangsu Prov Nanjing 210029 Peoples R China
camouflaged object detection (COD) is a challenging task, aimed at segmenting objects that are similar in color and texture to their background. Sufficient multi-scale feature fusion is crucial for accurately segmenti... 详细信息
来源: 评论
Edge Perception camouflaged object detection Under Frequency Domain Reconstruction
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2024年 第10期34卷 10194-10207页
作者: Liu, Zijian Deng, Xiaoheng Jiang, Ping Lv, Conghao Min, Geyong Wang, Xin Cent South Univ Sch Comp Sci & Engn Changsha 410083 Peoples R China Shenzhen Res Inst Shenzhen 518000 Peoples R China Cent South Univ Sch Elect Informat Changsha 410083 Peoples R China Univ Exeter Dept Comp Sci Exeter EX4 4QF England Qilu Univ Technol Shandong Acad Sci Shandong Comp Sci Ctr Minist EducKey Lab Comp Power Network & Informat Jinan 250014 Peoples R China
camouflaged object detection has been considered a challenging task due to its inherent similarity and interference from background noise. It requires accurate identification of targets that blend seamlessly with the ... 详细信息
来源: 评论
A survey on deep learning-based camouflaged object detection
收藏 引用
MULTIMEDIA SYSTEMS 2024年 第5期30卷 1-23页
作者: Zhong, Junmin Wang, Anzhi Ren, Chunhong Wu, Jintao Guizhou Normal Univ Dept Big Data & Comp Sci Guiyang 550025 Peoples R China
camouflaged object detection (COD) is an emerging visual detection task that aims to identify objects that conceal themselves in the surrounding environment. The high intrinsic similarities between the camouflaged obj... 详细信息
来源: 评论
MGL: Mutual Graph Learning for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 1897-1910页
作者: Zhai, Qiang Li, Xin Yang, Fan Jiao, Zhicheng Luo, Ping Cheng, Hong Liu, Zicheng Univ Elect Sci & Technol China Ctr Robot Chengdu 611731 Peoples R China AIQ Abu Dhabi U Arab Emirates Brown Univ Radiol AI Lab Providence RI 02912 USA Univ Hong Kong Sch Comp Sci Hong Kong Peoples R China Microsoft AI Percept & Mixed Real Redmond WA 98101 USA
camouflaged object detection, which aims to detect/segment the object(s) that blend in with their surrounding, remains challenging for deep models due to the intrinsic similarities between foreground objects and backg... 详细信息
来源: 评论
Whole-body tumor segmentation from PET/CT images using a two-stage cascaded neural network with camouflaged object detection mechanisms
收藏 引用
MEDICAL PHYSICS 2023年 第10期50卷 6151-6162页
作者: He, Jiangping Zhang, Yangjie Chung, Maggie Wang, Michael Wang, Kun Ma, Yan Ding, Xiaoyang Li, Qiang Pu, Yonglin Lanzhou Univ Finance & Econ Dept Elect Engn Lanzhou Gansu Peoples R China Univ Calif San Francisco Dept Radiol San Francisco CA USA Univ Calif San Francisco Dept Pathol San Francisco CA USA Univ Chicago Dept Radiol Chicago IL USA Univ Chicago Dept Radiol Chicago IL 60637 USA
BackgroundWhole-body Metabolic Tumor Volume (MTVwb) is an independent prognostic factor for overall survival in lung cancer patients. Automatic segmentation methods have been proposed for MTV calculation. Nevertheless... 详细信息
来源: 评论
Toward Deeper Understanding of camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第7期33卷 3462-3476页
作者: Lv, Yunqiu Zhang, Jing Dai, Yuchao Li, Aixuan Barnes, Nick Fan, Deng-Ping Northwestern Polytech Univ Sch Elect & Informat Xian 710129 Peoples R China Xidian Univ State Key Lab Integrated Serv Networks Xian 710071 Peoples R China Australian Natl Univ Sch Comp Canberra ACT 2601 Australia Nankai Univ Comp Sci Dept Tianjin 300071 Peoples R China
Preys in the wild evolve to be camouflaged to avoid being recognized by predators. In this way, camouflage acts as a key defence mechanism across species that is critical to survival. To detect and segment the whole s... 详细信息
来源: 评论
Go Closer to See Better: camouflaged object detection via object Area Amplification and Figure-Ground Conversion
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第10期33卷 5444-5457页
作者: Xing, Haozhe Gao, Shuyong Wang, Yan Wei, Xujun Tang, Hao Zhang, Wenqiang Fudan Univ Acad Engn & Technol Shanghai 200433 Peoples R China Fudan Univ Sch Comp Sci Shanghai Key Lab Intelligent Informat Proc Shanghai 200433 Peoples R China Swiss Fed Inst Technol Dept Informat Technol & Elect Engn CH-8092 Zurich Switzerland Yiwu Res Inst Fudan Univ Yiwu 322000 Zhejiang Peoples R China
camouflaged object detection (COD) aims to detect objects well hidden in the environment. The main challenges of COD come from the high degree of texture and color overlapping between the objects and their surrounding... 详细信息
来源: 评论
Zero-Shot camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 5126-5137页
作者: Li, Haoran Feng, Chun-Mei Xu, Yong Zhou, Tao Yao, Lina Chang, Xiaojun Univ Technol Sydney ReLER Lab AAII Ultimo NSW 2007 Australia Univ Wollongong Sch Comp & Informat Technol Wollongong NSW 2522 Australia ASTAR Inst High Performance Comp IHPC Singapore 138632 Singapore Harbin Inst Technol Shenzhen Shenzhen Key Lab Visual Object Detect & Recognit Shenzhen 518055 Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing 210094 Peoples R China Univ New South Wales Sch Comp Sci & Engn Data Dynam Lab Sydney NSW 2052 Australia Univ Technol Sydney Fac Engn & Informat Technol ReLER Lab AAII Ultimo NSW 2007 Australia
The goal of camouflaged object detection (COD) is to detect objects that are visually embedded in their surroundings. Existing COD methods only focus on detecting camouflaged objects from seen classes, while they suff... 详细信息
来源: 评论
Feature Aggregation and Propagation Network for camouflaged object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 7036-7047页
作者: Zhou, Tao Zhou, Yi Gong, Chen Yang, Jian Zhang, Yu Nanjing Univ Sci & Technol Key Lab Intelligent Percept & Syst High Dimens In PCA Lab Minist Educ Nanjing 210094 Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Social Nanjing 210094 Peoples R China Minist Educ Key Lab Syst Control & Informat Proc Shanghai 200240 Peoples R China Southeast Univ Sch Comp Sci & Engn Nanjing 211189 Peoples R China Lehigh Univ Dept Bioengn Bethlehem 18015 PA USA
camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment, which has attracted increasing attention over the past decades. Although several COD methods have been develop... 详细信息
来源: 评论