咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 3 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 7 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
  • 7 篇 理学
    • 3 篇 数学
    • 3 篇 生物学
    • 1 篇 海洋科学
    • 1 篇 统计学(可授理学、...
  • 3 篇 医学
    • 3 篇 临床医学
    • 3 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 2 篇 法学
    • 2 篇 法学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学

主题

  • 15 篇 chow-liu algorit...
  • 3 篇 structure learni...
  • 3 篇 ising model
  • 3 篇 graphical models
  • 2 篇 discrete laplace...
  • 2 篇 nonsmooth functi...
  • 2 篇 high dimensional...
  • 2 篇 approximation th...
  • 2 篇 forensic genetic...
  • 2 篇 distribution est...
  • 2 篇 hidden markov ra...
  • 2 篇 mutual informati...
  • 2 篇 noisy data
  • 2 篇 predictive learn...
  • 1 篇 automatic featur...
  • 1 篇 minimax lower bo...
  • 1 篇 minimum spanning...
  • 1 篇 hybrid bayesian ...
  • 1 篇 forest graphical...
  • 1 篇 tree-structured ...

机构

  • 2 篇 univ auckland de...
  • 2 篇 aalborg univ dep...
  • 1 篇 department of el...
  • 1 篇 sharif univ tech...
  • 1 篇 univ southern ma...
  • 1 篇 univ copenhagen ...
  • 1 篇 mit eecs cambrid...
  • 1 篇 rutgers state un...
  • 1 篇 karunya inst tec...
  • 1 篇 osaka univ dept ...
  • 1 篇 univ north carol...
  • 1 篇 karunya inst tec...
  • 1 篇 univ kiel univ h...
  • 1 篇 texas a&m univer...
  • 1 篇 univ cattolica s...
  • 1 篇 mit csail cambri...
  • 1 篇 univ valle aosta...
  • 1 篇 dartmouth coll g...
  • 1 篇 univ delaware ct...
  • 1 篇 queen mary univ ...

作者

  • 2 篇 han yanjun
  • 2 篇 andersen mikkel ...
  • 2 篇 jiao jiantao
  • 2 篇 weissman tsachy
  • 1 篇 kalogerias diony...
  • 1 篇 zhou jie
  • 1 篇 riso luigi
  • 1 篇 karagas margaret...
  • 1 篇 schindler kaspar
  • 1 篇 shalmani mohamma...
  • 1 篇 nagabushanam per...
  • 1 篇 nguyen quang p.
  • 1 篇 motahari seyed a...
  • 1 篇 knudsen maria
  • 1 篇 suzuki joe
  • 1 篇 mcritchie susan
  • 1 篇 viles weston d.
  • 1 篇 buckleton john
  • 1 篇 venkat kartik
  • 1 篇 radha subramanya...

语言

  • 15 篇 英文
检索条件"主题词=Chow-Liu algorithm"
15 条 记 录,以下是1-10 订阅
排序:
A novel chow-liu algorithm and its application to gene differential analysis
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2017年 80卷 1-18页
作者: Suzuki, Joe Osaka Univ Dept Math Suita Osaka 565 Japan
This paper proposes an estimator of mutual information for both discrete and continuous variables and applies it to the chow-liu algorithm to find a forest that expresses probabilistic relations among them. The state-... 详细信息
来源: 评论
Beyond Maximum Likelihood: Boosting the chow-liu algorithm for Large Alphabets  50
Beyond Maximum Likelihood: Boosting the Chow-Liu Algorithm f...
收藏 引用
50th Asilomar Conference on Signals, Systems and Computers (ASILOMARSSC)
作者: Jiao, Jiantao Han, Yanjun Weissman, Tsachy Stanford Univ EE Dept Stanford CA 94305 USA
We show that in high dimensional distributions, i.e., the regime where the alphabet size of each node is comparable to the number of observations, the chow-liu algorithm on learning graphical models is highly sub-opti... 详细信息
来源: 评论
Learning of Tree-Structured Gaussian Graphical Models on Distributed Data Under Communication Constraints
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2019年 第1期67卷 17-28页
作者: Tavassolipour, Mostafa Motahari, Seyed Abolfazl Shalmani, Mohammad-Taghi Manzuri Sharif Univ Technol Dept Comp Engn Tehran *** Iran
In this paper, learning of tree-structured Gaussian graphical models from distributed data is addressed. In our model, samples are stored in a set of distributed machines where each machine has access to only a subset... 详细信息
来源: 评论
Minimax Estimation of Functionals of Discrete Distributions
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2015年 第5期61卷 2835-2885页
作者: Jiao, Jiantao Venkat, Kartik Han, Yanjun Weissman, Tsachy Stanford Univ Dept Elect Engn Stanford CA 94305 USA Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
We propose a general methodology for the construction and analysis of essentially minimax estimators for a wide class of functionals of finite dimensional parameters, and elaborate on the case of discrete distribution... 详细信息
来源: 评论
Predictive Learning on Hidden Tree-Structured Ising Models
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2021年 第1期22卷 1-82页
作者: Nikolakakis, Konstantinos E. Kalogerias, Dionysios S. Sarwate, Anand D. Rutgers State Univ Dept Elect & Comp Engn 94 Brett Rd Piscataway NJ 08854 USA Michigan State Univ Dept Elect & Comp Engn 428 S Shaw Lane E Lansing MI 48824 USA
We provide high-probability sample complexity guarantees for exact structure recovery and accurate predictive learning using noise-corrupted samples from an acyclic (tree-shaped) graphical model. The hidden variables ... 详细信息
来源: 评论
Information enhanced model selection for Gaussian graphical model with application to metabolomic data
收藏 引用
BIOSTATISTICS 2021年 第3期23卷 926-948页
作者: Zhou, Jie Hoen, Anne G. Mcritchie, Susan Pathmasiri, Wimal Viles, Weston D. Nguyen, Quang P. Madan, Juliette C. Dade, Erika Karagas, Margaret R. Gui, Jiang Dartmouth Coll Geisel Sch Med Dept Biomed Data Sci 3 Rope Ferry Rd Hanover NH 03755 USA Dartmouth Coll Geisel Sch Med Dept Epidemiol 3 Rope Ferry Rd Hanover NH 03755 USA Univ North Carolina Chapel Hill Nutr Res Inst Dept Nutr Sch Publ Hlth 500 Laureate Way Kannapolis NC 28081 USA Univ Southern Maine Dept Math & Stat 96 Falmouth St Portland ME 04103 USA
In light of the low signal-to-noise nature of many large biological data sets, we propose a novel method to learn the structure of association networks using Gaussian graphical models combined with prior knowledge. Ou... 详细信息
来源: 评论
Modelling the dependence structure of Y-STR haplotypes using graphical models
收藏 引用
FORENSIC SCIENCE INTERNATIONAL-GENETICS 2018年 37卷 29-36页
作者: Andersen, Mikkel Meyer Curran, James de Zoete, Jacob Taylor, Duncan Buckleton, John Aalborg Univ Dept Math Sci Skjernvej 4A DK-9220 Aalborg Denmark Univ Auckland Dept Stat PB 92019 Auckland New Zealand Queen Mary Univ London Sch Elect Engn & Comp Sci 10 Godward Sq London E1 4FZ England Flinders Univ S Australia Sch Biol Sci GPO Box 2100 Adelaide SA 5001 Australia ESR hPB 92021 Auckland New Zealand
Many methods have been suggested for evaluating the evidential value of a matching Y-chromosomal DNA profile obtained from a biological stain associated with a crime scene and the Y-chromosomal DNA profile of a suspec... 详细信息
来源: 评论
chow-liu trees are sufficient predictive models for reproducing key features of functional networks of periictal EEG time-series
收藏 引用
NEUROIMAGE 2015年 118卷 520-537页
作者: Steimer, Andreas Zubler, Frederic Schindler, Kaspar Univ Bern Inselspital Dept Neurol Univ Hosp Bern CH-3010 Bern Switzerland
Seizure freedom in patients suffering from pharmacoresistant epilepsies is still not achieved in 20-30% of all cases. Hence, current therapies need to be improved, based on a more complete understanding of ictogenesis... 详细信息
来源: 评论
Manifold Learning Analysis and Bayesian Latent-Observational Feature Prediction of a Large Eddy Simulated Turbulence Field
Manifold Learning Analysis and Bayesian Latent-Observational...
收藏 引用
OCEANS Hampton Roads Conference
作者: Scott, Nicholas Kukulka, Tobias Riverside Res Open Innovat Ctr Beavercreek OH 45431 USA Univ Delaware Ctr Appl Coastal Res Newark DE USA
A latent-observational space analytical formulism is applied to a sub-grid modeled turbulent kinetic energy (tke) field emanating from ocean turbulence large eddy simulation (LES) data containing Langmuir cells but no... 详细信息
来源: 评论
Sample-Optimal and Efficient Learning of Tree Ising Models  2021
Sample-Optimal and Efficient Learning of Tree Ising Models
收藏 引用
53rd Annual ACM SIGACT Symposium on Theory of Computing (STOC)
作者: Daskalakis, Constantinos Pan, Qinxuan MIT EECS Cambridge MA 02139 USA MIT CSAIL Cambridge MA 02139 USA
We show that n-variable tree-structured Ising models can be learned computationally-efficiently to within total variation distance ! from an optimal O(n ln n/epsilon(2)) samples, where O(center dot) hides an absolute ... 详细信息
来源: 评论