咨询与建议

限定检索结果

文献类型

  • 35 篇 期刊文献
  • 28 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 64 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 61 篇 工学
    • 51 篇 电气工程
    • 45 篇 信息与通信工程
    • 35 篇 计算机科学与技术...
    • 3 篇 交通运输工程
    • 3 篇 软件工程
  • 6 篇 理学
    • 4 篇 数学
    • 2 篇 物理学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 64 篇 coded distribute...
  • 17 篇 task analysis
  • 17 篇 distributed comp...
  • 10 篇 computational mo...
  • 9 篇 servers
  • 9 篇 codes
  • 9 篇 security
  • 9 篇 encoding
  • 8 篇 mapreduce
  • 7 篇 communication lo...
  • 6 篇 resource managem...
  • 6 篇 edge computing
  • 5 篇 internet of thin...
  • 5 篇 deep learning
  • 5 篇 straggler effect...
  • 5 篇 optimization
  • 5 篇 resource allocat...
  • 5 篇 machine learning
  • 5 篇 privacy
  • 4 篇 stragglers

机构

  • 10 篇 nanyang technol ...
  • 6 篇 alibaba grp peop...
  • 5 篇 alibaba ntu jri
  • 5 篇 nanyang technol ...
  • 4 篇 ecole technol su...
  • 4 篇 univ british col...
  • 4 篇 nanyang technol ...
  • 4 篇 city univ hong k...
  • 4 篇 nanjing univ aer...
  • 3 篇 southern univ sc...
  • 3 篇 sutd
  • 3 篇 nanjing univ aer...
  • 2 篇 univ windsor win...
  • 2 篇 guangxi key labo...
  • 2 篇 guangxi normal u...
  • 2 篇 collaborat innov...
  • 2 篇 san diego state ...
  • 2 篇 nanyang technol ...
  • 2 篇 phenikaa univ fa...
  • 2 篇 singapore univ t...

作者

  • 18 篇 niyato dusit
  • 10 篇 xiong zehui
  • 9 篇 leung cyril
  • 9 篇 ng jer shyuan
  • 8 篇 lim wei yang bry...
  • 6 篇 ardakani masoud
  • 5 篇 zhu kun
  • 5 篇 ardakani maryam ...
  • 4 篇 sung chi wan
  • 4 篇 chen jiajun
  • 4 篇 garg sahil
  • 4 篇 asheralieva alia
  • 3 篇 dai mingjun
  • 3 篇 elia petros
  • 3 篇 qiu houming
  • 3 篇 tellambura chint...
  • 3 篇 ji mingyue
  • 2 篇 zhang ning
  • 2 篇 chen rong-rong
  • 2 篇 caire giuseppe

语言

  • 63 篇 英文
  • 1 篇 其他
检索条件"主题词=Coded Distributed Computing"
64 条 记 录,以下是41-50 订阅
Edge computing-Aided coded Vertical Federated Linear Regression
收藏 引用
IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING 2022年 第3期8卷 1543-1551页
作者: Dai, Mingjun Zheng, Ziying Hong, Zhaoyan Zhang, Shengli Wang, Hui Shenzhen Univ Coll Elect & Informat Engn Guangdong Prov Engn Ctr Ubiquitous Comp & Intelli Shenzhen 518060 Peoples R China Shenzhen Univ Coll Math & Stat Shenzhen 518060 Peoples R China Shenzhen Inst Informat Technol Commun Engn Dept Shenzhen 518109 Peoples R China
For the training process of federated linear regression (FLR), which is the simplest form of federated learning, the integrated computation at each company is slowed down either by huge volume data or by time-consumin... 详细信息
来源: 评论
Multi-Access distributed computing
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2024年 第5期70卷 3385-3398页
作者: Brunero, Federico Elia, Petros EURECOM Commun Syst Dept F-06410 Sophia Antipolis France Huawei Munich Res Ctr Opt & Quantum Commun Lab D-80992 Munich Germany
coded distributed computing (CDC) is a new technique proposed with the purpose of decreasing the intense data exchange required for parallelizing distributed computing systems. Under the famous MapReduce paradigm, thi... 详细信息
来源: 评论
Secure and Efficient coded Multi-Access Edge computing With Generalized Graph Neural Networks
收藏 引用
IEEE TRANSACTIONS ON MOBILE computing 2023年 第9期22卷 5504-5524页
作者: Asheralieva, Alia Niyato, Dusit Southern Univ Sci & Technol Res Inst Trustworthy Autonomous Syst Dept Comp Sci & Engn Shenzhen 518055 Guangdong Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore
We formulate a novel framework to improve security and utility of the coded multi-access edge computing (MEC) network for Internet of Things (IoT) applications where multiple edge servers (ESs) jointly process raw IoT... 详细信息
来源: 评论
A Hierarchical Incentive Design Toward Motivating Participation in coded Federated Learning
收藏 引用
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 2022年 第1期40卷 359-375页
作者: Ng, Jer Shyuan Lim, Wei Yang Bryan Xiong, Zehui Cao, Xianbin Niyato, Dusit Leung, Cyril Kim, Dong In Alibaba Grp Hangzhou 311121 Peoples R China Nanyang Technol Univ NTU Alibaba NTU Joint Res Inst Singapore 639798 Singapore Singapore Univ Technol & Design SUTD Pillar Informat Syst Technol & Design Singapore 487372 Singapore Beihang Univ Sch Elect & Informat Engn Beijing 100191 Peoples R China Nanyang Technol Univ NTU Sch Comp Sci & Engn Singapore 639798 Singapore Univ British Columbia UBC Dept Elect & Comp Engn Vancouver BC V6T 1Z4 Canada Joint NTU UBC Res Ctr Excellence Act Living Elder Singapore 639798 Singapore Sungkyunkwan Univ SKKU Dept Elect & Comp Engn Seoul 03063 South Korea
Federated Learning (FL) is a privacy-preserving collaborative learning approach that trains artificial intelligence (AI) models without revealing local datasets of the FL workers. While FL ensures the privacy of the F... 详细信息
来源: 评论
Fast and Secure Computational Offloading With Lagrange coded Mobile Edge computing
收藏 引用
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 2021年 第5期70卷 4924-4942页
作者: Asheralieva, Alia Niyato, Dusit Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Guangdong Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore
This paper proposes a novel framework based on Lagrange coded computing (LCC) for fast and secure offloading of computing tasks in the mobile edge computing (MEC) network. The network is formed by multiple base statio... 详细信息
来源: 评论
codedPaddedFL and codedSecAgg: Straggler Mitigation and Secure Aggregation in Federated Learning
收藏 引用
IEEE TRANSACTIONS ON COMMUNICATIONS 2023年 第4期71卷 2013-2027页
作者: Schlegel, Reent Kumar, Siddhartha Rosnes, Eirik Graell i Amat, Alexandre Simula UiB N-5006 Bergen Norway OHB Digital Connect GmbH D-28359 Bremen Germany Qamcom Res & Technol S-41285 Gothenburg Sweden Chalmers Univ Technol Dept Elect Engn S-41296 Gothenburg Sweden
We present two novel federated learning (FL) schemes that mitigate the effect of straggling devices by introducing redundancy on the devices' data across the network. Compared to other schemes in the literature, w... 详细信息
来源: 评论
Auction-and-Learning Based Lagrange coded computing Model for Privacy-Preserving, Secure, and Resilient Mobile Edge computing
收藏 引用
IEEE TRANSACTIONS ON MOBILE computing 2023年 第2期22卷 744-764页
作者: Asheralieva, Alia Niyato, Dusit Xiong, Zehui Southern Univ Sci & Technol Dept Comp Sci & Engn Shenzhen 518055 Guangdong Peoples R China Nanyang Technol Univ Sch Comp Sci & Engn Singapore 639798 Singapore Singapore Univ Technol & Design Informat Syst Technol & Design Pillar Singapore 487372 Singapore
We design a novel encoding model based on Lagrange coded computing (LCC) for private, secure, and resilient distributed mobile edge computing (MEC) systems, where multiple base stations (BSs) act as "masters"... 详细信息
来源: 评论
A Systematic Approach Towards Efficient Private Matrix Multiplication
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY
收藏 引用
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY 2022年 第2期3卷 257-274页
作者: Zhu, Jinbao Li, Songze Hong Kong Univ Sci & Technol Guangzhou Thrust Internet Things Guangzhou 510006 Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
We consider the problems of Private and Secure Matrix Multiplication (PSMM) and Fully Private Matrix Multiplication (FPMM), for which matrices privately selected by a master node are multiplied at distributed worker n... 详细信息
来源: 评论
Heterogeneity Shifts the Storage-Computation Tradeoff in Secure Multi-Cloud Systems
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2023年 第2期69卷 1015-1036页
作者: Chen, Jiajun Sung, Chi Wan Chan, Terence H. City Univ Hong Kong Dept Elect Engn Hong Kong Peoples R China Univ South Australia Inst Telecommun Res Adelaide SA 5095 Australia
This paper considers the design of heterogeneous multi-cloud systems for big data storage and computing in the presence of cloud collusion and failures. A fundamental concept of such a system is the secrecy capacity, ... 详细信息
来源: 评论
Deadline-Aware coded Computation Across Homogeneous Workers
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2023年 30卷 982-986页
作者: Mehrabi, Mehrad Ardakani, Maryam Haghighi Ardakani, Masoud Univ Alberta Dept Elect & Comp Engn Edmonton AB T6G 2R3 Canada
distributed computing systems have been widely used in recent years to handle massive computations required by newly emerged machine learning algorithms and signal processing problems. In practice, a distributed compu... 详细信息
来源: 评论