Kartézské genetické programován (CGP) je evoluc inspirovaná metoda strojového učen, která je primárně určená pro automatizovaný návrh programů a čslicových ...
详细信息
Kartézské genetické programován (CGP) je evoluc inspirovaná metoda strojového učen, která je primárně určená pro automatizovaný návrh programů a čslicových obvodů. CGP je úspěšné v řešen mnoha úloh z reálného světa. Avšak k nalezen inovativnch řešen obvykle potřebuje značný výpočetn výkon. Každý kandidátn program navržený pomoc CGP mus být spuštěn, aby se zjistilo, do jaké mry tento program řeš zadaný problém, a mohla mu být přiřazena fitness hodnota. Právě vyhodnocen fitness bývá výpočetně nejnáročnějš část návrhu pomoc CGP. Tato práce se zabývá využitm koevoluce prediktorů fitness v CGP za účelem zrychlen procesu evolučnho návrhu prováděného pomoc CGP. Prediktor fitness je malá podmnožina trénovacch dat použvaná pro rychlý odhad fitness hodnoty namsto náročného vyhodnocen objektivn fitness hodnoty. Koevoluce prediktorů fitness je optimalizačn metoda modelován fitness, která snižuje náročnost a frekvenci výpočtu fitness. V této práci je koevolučn algoritmus přizpůsoben pro CGP a jsou představeny a zkoumány tři přstupy k zakódován prediktorů fitness. Představená metoda je experimentálně vyhodnocena v pěti úlohách symbolické regrese a v úloze návrhu obrazových filtrů. Výsledky experimentů ukazuj, že pomoc této metody lze významně snžit výpočetn čas, který CGP potřebuje pro řešen zkoumané třdy úloh.
Tato práce se zabývá návrhem řadicích sítí pomocí kartézskeho genetického programovaní s využitím koevoluce. Řadicí sítě jsou abstraktní mode...
详细信息
Tato práce se zabývá návrhem řadicích sítí pomocí kartézskeho genetického programovaní s využitím koevoluce. Řadicí sítě jsou abstraktní modely schopné seřadit posloupnost čísel. Výhodou řadicích sítí je snadná implementovatelnost do hardware, ale jejich návrh je velmi složitý. Jednou z nekonvečních a efektivních možností jak navrhovat řadicí sítě je pomocí kartézskeho genetického programování (CGP). CGP je algoritmus patřící do skupiny evolučních algoritmů inspirovaných Darwinovou evoluční teorii. Efektivitu CGP algoritmu je možno zvýšit použitím koevoluce. Koevoluce je přístup, který pracuje s více populacemi, které se vzájemně ovlivňují a neustále vyvíjejí, čímž zabraňují uváznutí prohledávání v lokálním optimu. V práci je ukázané, že pomocou koevolúcie je možné dosiahnuť takmer dvojnásobné urýchlenie v porovnaní s evolučným návrhom.
Tato práce se zabývá využitím koevoluce při řešení symbolické regrese. Symbolická regrese se používá pro zjištění matematického vztahu, který aproximuje nam...
详细信息
Tato práce se zabývá využitím koevoluce při řešení symbolické regrese. Symbolická regrese se používá pro zjištění matematického vztahu, který aproximuje naměřená data. Lze ji provádět pomocí genetického programování - metody ze skupiny evolučních algoritmů inspirovaných evolučními procesy v přírodě. Koevoluce pracuje s několika vzájemně působícími evolučními procesy. V této práci je popsán návrh a implementace aplikace, která dokáže provádět symbolickou regresi pomocí koevoluce pro úlohy založené na testu. Testy jsou generovány novou metodou, která umožňuje dynamicky měnit počet trénovacích vektorů potřebných k ohodnocení kandidátních řešení. Funkčnost aplikace byla ověřena na pěti testovacích úlohách. Výsledky byly porovnány s koevoluční metodou pracující s fixním počtem trénovacích vektorů. U tří úloh nalezla nová metoda řešení požadované kvality během menšího počtu generací, většinou ale bylo potřeba provést více vyčíslení trénovacích vektorů.
Tato práce se zabývá využitím principů koevoluce pro návrh obrazových filtrů. Evoluční algoritmy se pro vývoj obrazových filtrů ukazují jako velmi výhodná me...
详细信息
Tato práce se zabývá využitím principů koevoluce pro návrh obrazových filtrů. Evoluční algoritmy se pro vývoj obrazových filtrů ukazují jako velmi výhodná metoda. Použitím koevoluce prediktorů fitness vnášíme do evolučního návrhu procesy, které vzájemným ovlivňováním populace kandidátních filtrů s populací prediktorů fitness dokáží zrychlit konvergenci řešení. Prediktor fitness je malá podmnožina množiny trénovacích vektorů a používá se k přibližnému určení fitness kandidátních filtrů. V této práci je pro evoluci prediktorů fitness využito nepřímé kódování, které reprezentuje matematický výraz, pomocí něhož jsou vybírány trénovací vektory použité pro vyhodnocení fitness kandidátních filtrů. Tento přístup byl experimentálně vyhodnocen v úloze evolučního návrhu náhodného impulzního šumu a šumu typu sůl a pepř pro různé intenzity šumu a také v úloze návrhu detektoru hran. Ukázalo se, že pomocí tohoto přístupu prediktory fitness přizpůsobují počet použitých trénovacích vektorů pro vyhodnocení kandidátního filtru souběžně s řešením úlohy a tím snižují výpočetní náročnost evolučního návrhu obrazových filtrů.
暂无评论