咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 9 篇 会议
  • 6 篇 学位论文

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 26 篇 工学
    • 25 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 3 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
  • 3 篇 理学
    • 2 篇 数学
    • 1 篇 生物学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 农学

主题

  • 34 篇 coevolutionary a...
  • 5 篇 cartesian geneti...
  • 4 篇 text
  • 3 篇 koevoluční algor...
  • 3 篇 evolutionary alg...
  • 3 篇 cooperative coev...
  • 3 篇 kartézské geneti...
  • 2 篇 genetic programm...
  • 2 篇 time series fore...
  • 2 篇 neural networks
  • 2 篇 evoluční algorit...
  • 2 篇 computer-aided l...
  • 2 篇 fitness predicti...
  • 2 篇 evolutionary des...
  • 2 篇 symbolic regress...
  • 2 篇 solution concept...
  • 2 篇 predikce fitness...
  • 2 篇 significant lags
  • 1 篇 fuzzy logic
  • 1 篇 cyber security

机构

  • 5 篇 brno university ...
  • 2 篇 gen elect global...
  • 2 篇 dept comp archit...
  • 2 篇 ben gurion univ ...
  • 2 篇 rensselaer polyt...
  • 2 篇 119 amory st cam...
  • 2 篇 the citadel 171 ...
  • 2 篇 univ s florida 4...
  • 2 篇 ramapo coll 505 ...
  • 2 篇 univ cent florid...
  • 1 篇 poznan univ tech...
  • 1 篇 eastern mediterr...
  • 1 篇 wuhan univ sch c...
  • 1 篇 univ minho inst ...
  • 1 篇 city univ hong k...
  • 1 篇 delft univ techn...
  • 1 篇 institute of com...
  • 1 篇 polish-japanese ...
  • 1 篇 toulouse inp lgp...
  • 1 篇 deep sea explora...

作者

  • 3 篇 wiegand r. paul
  • 3 篇 bucci anthony
  • 2 篇 kumar amruth n.
  • 2 篇 bari a. t. m. go...
  • 2 篇 del jesus m. j.
  • 2 篇 o'reilly una-may
  • 2 篇 sipper m
  • 2 篇 albert jennifer ...
  • 2 篇 subbu r
  • 2 篇 parras-gutierrez...
  • 2 篇 sanderson ac
  • 2 篇 rivas v. m.
  • 2 篇 zaritsky a
  • 2 篇 garcia-arenas m.
  • 2 篇 hemberg erik
  • 2 篇 krawiec krzyszto...
  • 2 篇 gaspar alessio
  • 1 篇 chaczko zenon
  • 1 篇 wiglasz michal
  • 1 篇 jakobovic domago...

语言

  • 32 篇 英文
  • 2 篇 其他
检索条件"主题词=Coevolutionary algorithms"
34 条 记 录,以下是21-30 订阅
排序:
DEREGULATED ELECTRICITY MARKET CALCULATION BASED ON NEUROEVOLUTION ALGORITHM
收藏 引用
INTERNATIONAL JOURNAL OF POWER AND ENERGY SYSTEMS 2018年 第1期38卷 1-7页
作者: Tiguercha, Ahmed Ladjici, Ahmed Amine Boudour, Mohamed Univ Sci & Technol Houari Boumedien Elect Engn Dept BP 16111 Algiers Algeria
The current paper investigates the use of neuroevolution algorithm to simulate the market agents behaviour in a deregulated day-ahead electricity market. The proposed approach is based on multi-agent system simulation... 详细信息
来源: 评论
A coevolutionary estimation of distribution algorithm based on dynamic differential grouping for mixed-variable optimization problems
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 245卷
作者: Huang, Shijia Wang, Zhe Ge, Yang Wang, Feng Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
The mixed variable optimization problems (MVOPs), which involves both continuous and discrete decision variables, are difficult to be solved due to the complex search space. Recently, many EA-based algorithms have bee... 详细信息
来源: 评论
Coevolving solutions to the shortest common superstring problem
收藏 引用
BIOSYSTEMS 2004年 第1-3期76卷 209-216页
作者: Zaritsky, A Sipper, M Ben Gurion Univ Negev Dept Comp Sci IL-84105 Beer Sheva Israel
The shortest common superstring (SCS) problem, known to be NP-Complete, seeks the shortest string that contains all strings from a given set. In this paper we compare four approaches for finding solutions to the SCS p... 详细信息
来源: 评论
Using Domain Knowledge in Coevolution and Reinforcement Learning to Simulate a Logistics Enterprise  22
Using Domain Knowledge in Coevolution and Reinforcement Lear...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Zhao, Ying Hemberg, Erik Derbinsky, Nate Mata, Gabino O'Reilly, Una-May Naval Postgrad Sch Monterey CA 93943 USA MIT CSAIL Cambridge MA 02139 USA Northeastern Univ Boston MA 02115 USA US Marine Corps Philadelphia PA USA
We demonstrate a framework (CoEv-Soar-RL) for a logistics enterprise to improve readiness, sustainment, and reduce operational risk. The CoEv-Soar-RL uses reinforcement learning and coevolutionary algorithms to improv... 详细信息
来源: 评论
What Is Your MOVE: Modeling Adversarial Network Environments  1
收藏 引用
23rd European International Conference on the Applications of Evolutionary Computation (EvoApplications) Held as Part of EvoStar Conference
作者: Knezevic, Karlo Picek, Stjepan Jakobovic, Domagoj Hernandez-Castro, Julio Univ Zagreb Fac Elect Engn & Comp Zagreb Croatia Delft Univ Technol Delft Netherlands Univ Kent Canterbury England
Finding optimal adversarial dynamics between defenders and attackers in large network systems is a complex problem one can approach from several perspectives. The results obtained are often not satisfactory since they... 详细信息
来源: 评论
Evolutionary Practice Problems Generation: Design Guidelines  28
Evolutionary Practice Problems Generation: Design Guidelines
收藏 引用
28th IEEE International Conference on Tools with Artificial Intelligence (ICTAI)
作者: Gaspar, Alessio Bari, A. T. M. Golam Kumar, Amruth N. Bucci, Anthony Wiegand, R. Paul Albert, Jennifer L. Univ S Florida 4202 E Fowler Ave Tampa FL 33620 USA Ramapo Coll 505 Ramapo Valley Rd Mahwah NJ USA 119 Amory St Cambridge MA USA Univ Cent Florida Inst Simulat & Training Orlando FL 32816 USA The Citadel 171 Moultrie St Charleston SC 29409 USA
This paper identifies design guidelines for the application of evolutionary techniques to the task of generating practice problems for learners in an Intelligent Tutoring System. To this end, we designed experiments t... 详细信息
来源: 评论
Robustness in cooperative coevolution  06
Robustness in cooperative coevolution
收藏 引用
8th Annual Genetic and Evolutionary Computation Conference
作者: Wiegand, R. Paul Potter, Mitchell A. US Naval Res Lab 4555 Overlook Ave SW Washington DC 20375 USA
Though recent analysis of traditional cooperative coevolutionary algorithms (CCEAs) casts doubt on their suitability for static optimization tasks, our experience is that the algorithms perform quite well in multiagen... 详细信息
来源: 评论
Thoughts on Solution Concepts  07
Thoughts on Solution Concepts
收藏 引用
Annual Conference of Genetic and Evolutionary Computation Conference
作者: Bucci, Anthony Pollack, Jordan B. Brandeis Univ Michtom Sch Comp Sci DEMO Lab Waltham MA 02454 USA
This paper explores connections between Ficici's notion of solution concept and order theory. Ficici postulates that algorithms should ascend ail order called weak preference;, thus, understanding this order is im... 详细信息
来源: 评论
Combatting financial fraud: a coevolutionary anomaly detection approach  08
Combatting financial fraud: a coevolutionary anomaly detecti...
收藏 引用
Proceedings of the 10th annual conference on Genetic and evolutionary computation
作者: Shelly Xiaonan Wu Wolfgang Banzhaf Memorial University of Newfoundland St John's NF Canada
A major difficulty for anomaly detection lies in discovering boundaries between normal and anomalous behavior, due to the deficiency of abnormal samples in the training phase. In this paper, a novel coevolutionary alg... 详细信息
来源: 评论
Opening the Black Box: Alternative Search Drivers for Genetic Programming and Test-based Problems
Opening the Black Box: Alternative Search Drivers for Geneti...
收藏 引用
作者: Krawiec, Krzysztof Brno University of Technology
Test-based problems are search and optimization problems in which candidate solutions interact with multiple tests (examples, fitness cases, environments) in order to be evaluated. The approach conventionally adopted ... 详细信息
来源: 评论