咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 3 篇 complementary le...
  • 1 篇 neural networks
  • 1 篇 synapse-based me...
  • 1 篇 convolutional ne...
  • 1 篇 uncertainty esti...
  • 1 篇 continuous learn...
  • 1 篇 intrinsic reward
  • 1 篇 audio classifica...
  • 1 篇 active learning
  • 1 篇 deep reinforceme...
  • 1 篇 exploration

机构

  • 1 篇 state key labora...
  • 1 篇 allen inst brain...
  • 1 篇 college of compu...
  • 1 篇 key laboratory o...
  • 1 篇 national univers...

作者

  • 2 篇 gao zijian
  • 2 篇 feng dawei
  • 2 篇 wan tianjiao
  • 2 篇 xu kele
  • 1 篇 mao xinjun
  • 1 篇 lee jung hoon
  • 1 篇 ding bo
  • 1 篇 wang changjian
  • 1 篇 wang huaimin
  • 1 篇 geng hui
  • 1 篇 jia hongda

语言

  • 3 篇 英文
检索条件"主题词=Complementary Learning System"
3 条 记 录,以下是1-10 订阅
排序:
complementary learning system Theory-based Active learning for Audio Classification
Complementary Learning System Theory-based Active Learning f...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Geng, Hui Gao, Zijian Wan, Tianjiao Feng, Dawei Wang, Changjian Xu, Kele College of Computer Science and Technology National University of Defense Technology Changsha China State Key Laboratory of Complex & Critical Software Environment Changsha China
Deep learning has significantly advanced the audio classification, achieving remarkable results. However, these successes often rely on extensive manual annotation of audio, a labor-intensive and costly process. Activ... 详细信息
来源: 评论
complementary learning system Based Intrinsic Reward in Reinforcement learning  48
Complementary Learning System Based Intrinsic Reward in Rein...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Gao, Zijian Xu, Kele Jia, Hongda Wan, Tianjiao Ding, Bo Feng, Dawei Mao, Xinjun Wang, Huaimin National University of Defense Technology Changsha China Key Laboratory of Software Engineering for Complex Systems Changsha China
Deep reinforcement learning has achieved encouraging performance in many realms. However, one of its primary challenges is the sparsity of extrinsic rewards, which is still far from solved. complementary learning syst... 详细信息
来源: 评论
DynMat, a network that can learn after learning
收藏 引用
NEURAL NETWORKS 2019年 116卷 88-100页
作者: Lee, Jung Hoon Allen Inst Brain Sci 615 Westlake Ave N Seattle WA 98109 USA
To survive in the dynamically-evolving world, we accumulate knowledge and improve our skills based on experience. In the process, gaining new knowledge does not disrupt our vigilance to external stimuli. In other word... 详细信息
来源: 评论