咨询与建议

限定检索结果

文献类型

  • 44 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 56 篇 工学
    • 44 篇 计算机科学与技术...
    • 17 篇 电气工程
    • 7 篇 控制科学与工程
    • 5 篇 石油与天然气工程
    • 5 篇 软件工程
    • 3 篇 动力工程及工程热...
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
    • 1 篇 生物医学工程(可授...
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 6 篇 理学
    • 4 篇 生物学
    • 3 篇 数学
    • 1 篇 地理学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 医学
    • 2 篇 临床医学

主题

  • 61 篇 comprehensive le...
  • 24 篇 particle swarm o...
  • 4 篇 particle swarm o...
  • 3 篇 artificial bee c...
  • 3 篇 global optimizat...
  • 3 篇 pso
  • 3 篇 feature selectio...
  • 2 篇 particle swarm o...
  • 2 篇 traveling salesm...
  • 2 篇 nonlinear loss
  • 2 篇 heterogeneous
  • 2 篇 marine predator ...
  • 2 篇 emergency schedu...
  • 2 篇 optimization
  • 2 篇 educational supp...
  • 2 篇 metropolis accep...
  • 2 篇 adaptive mutatio...
  • 2 篇 jaya algorithm
  • 2 篇 constrained mult...
  • 2 篇 dynamic multi-sw...

机构

  • 3 篇 nanchang inst te...
  • 2 篇 jouf univ fac en...
  • 2 篇 fujian prov univ...
  • 2 篇 ajman univ artif...
  • 2 篇 chongqing univ c...
  • 2 篇 hunan univ coll ...
  • 2 篇 hunan univ state...
  • 2 篇 hunan key lab in...
  • 2 篇 hong kong univ s...
  • 2 篇 jilin univ coll ...
  • 2 篇 minist educ key ...
  • 2 篇 univ louisville ...
  • 2 篇 fujian agr & for...
  • 2 篇 tianjin univ sch...
  • 2 篇 northeast forest...
  • 1 篇 zagazig univ fac...
  • 1 篇 natl univ singap...
  • 1 篇 guizhou power gr...
  • 1 篇 southern fed uni...
  • 1 篇 nanyang technol ...

作者

  • 7 篇 yu xiang
  • 3 篇 sun wei
  • 3 篇 lin anping
  • 3 篇 yousri dalia
  • 2 篇 zhang xueqing
  • 2 篇 wang hui
  • 2 篇 xu guiping
  • 2 篇 shi xiaohu
  • 2 篇 tangaramvong saw...
  • 2 篇 sun hui
  • 2 篇 jin zhigang
  • 2 篇 zhao ming
  • 2 篇 zhang yiying
  • 2 篇 zhong yiwen
  • 2 篇 han yuxiao
  • 2 篇 zhu shufang
  • 2 篇 yu hongshan
  • 2 篇 liang yanchun
  • 2 篇 li xiangke
  • 2 篇 lee heow pueh

语言

  • 60 篇 英文
  • 1 篇 其他
检索条件"主题词=Comprehensive Learning"
61 条 记 录,以下是1-10 订阅
排序:
Dual-Population Adaptive Strategy comprehensive learning Particle Swarm Optimization  5th
Dual-Population Adaptive Strategy Comprehensive Learning Par...
收藏 引用
5th International Conference on Neural Computing for Advanced Applications (NCAA)
作者: Chen, Yujie Fan, Mingjie Zhao, Xinchao Beijing Univ Posts & Telecommun Beijing 100876 Peoples R China
Particle swarm optimization (PSO) is a classic algorithm in the field of swarm intelligence. Despite its widespread use, PSO faces challenges in complex optimization scenarios, particularly its propensity for falling ... 详细信息
来源: 评论
comprehensive learning Jaya algorithm for engineering design optimization problems
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2022年 第5期33卷 1229-1253页
作者: Zhang, Yiying Jin, Zhigang Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China
Jaya algorithm (JAYA) is a recently developed metaheuristic algorithm for global optimization problems. JAYA has a very simple structure and only needs the essential population size and terminal condition for solving ... 详细信息
来源: 评论
Discrete comprehensive learning particle swarm optimization algorithm with Metropolis acceptance criterion for traveling salesman problem
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2018年 42卷 77-88页
作者: Zhong, Yiwen Lin, Juan Wang, Lijin Zhang, Hui Fujian Agr & Forestry Univ Coll Comp & Informat Sci Fuzhou 350002 Fujian Peoples R China Fujian Prov Univ Fujian Agr & Forestry Univ Key Lab Smart Agr & Forestry Fuzhou 350002 Fujian Peoples R China Univ Louisville JB Speed Sch Engn Louisville KY 40292 USA
Particle swarm optimization (PSO) algorithm, one of the most popular swarm intelligence algorithms, has been widely studied and applied to a large number of continuous and discrete optimization problems. In this paper... 详细信息
来源: 评论
Adaptive comprehensive learning particle swarm optimization with cooperative archive
收藏 引用
APPLIED SOFT COMPUTING 2019年 77卷 533-546页
作者: Lin, Anping Sun, Wei Yu, Hongshan Wu, Guohua Tang, Hollgwe Hunan Univ Coll Elect & Informat Engn Changsha 410082 Hunan Peoples R China Hunan Univ State Key Lab Adv Design & Mfg Vehicle Body Changsha 410082 Hunan Peoples R China Hunan Key Lab Intelligent Robot Technol Elect Mfg Changsha 410082 Hunan Peoples R China Cent South Univ Sch Traff & Transportat Engn Changsha 410073 Hunan Peoples R China Natl Univ Def Technol Coll Informat Syst & Management Changsha 410082 Hunan Peoples R China
comprehensive learning particle swarm optimization (CLPSO) enhances its exploration capability by exploiting all other particles' historical information to update each particle's velocity. However, CLPSO adopt... 详细信息
来源: 评论
Multilevel thresholding Aerial image segmentation using comprehensive learning-based Snow ablation optimizer with double attractors
收藏 引用
EGYPTIAN INFORMATICS JOURNAL 2024年 27卷
作者: Abd Elaziz, Mohamed Al-qaness, Mohammed A. A. Ibrahim, Rehab Ali Ewees, Ahmed A. Shrahili, Mansour Zagazig Univ Fac Sci Dept Math Zagazig Egypt Zhejiang Normal Univ Coll Phys & Elect Informat Engn Jinhua 321004 Peoples R China Zhejiang Inst Optoelect Jinhua 321004 Peoples R China Damietta Univ Dept Comp Dumyat 34517 Egypt King Saud Univ Coll Sci Dept Stat & Operat Res POB 2455 Riyadh 11451 Saudi Arabia Emirates Int Univ Coll Engn & Informat Technol Sanaa 16881 Yemen Galala Univ Fac Comp Sci & Engn Suze 435611 Egypt Ajman Univ Artificial Intelligence Res Ctr AIRC Ajman 346 U Arab Emirates Lebanese Amer Univ Dept Elect & Comp Engn Byblos 135053 Lebanon Middle East Univ MEU Res Unit Amman 11831 Jordan
Aerial photography is a remote sensing technique used for target detection, enabling both qualitative and quantitative analysis. The segmentation process is considered one of the most important processes to improve th... 详细信息
来源: 评论
Levy flight-based inverse adaptive comprehensive learning particle swarm optimization
收藏 引用
MATHEMATICAL BIOSCIENCES AND ENGINEERING 2022年 第5期19卷 5241-5268页
作者: Zhou, Xin Zhou, Shangbo Han, Yuxiao Zhu, Shufang Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China Minist Educ Key Lab Dependable Serv Comp Cyber Phys Soc Chongqing 400030 Peoples R China
In the traditional particle swarm optimization algorithm, the particles always choose to learn from the well-behaved particles in the population during the population iteration. Nevertheless, according to the principl... 详细信息
来源: 评论
A hybrid cooperative-comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2008年 第2期34卷 1341-1350页
作者: Maltra, Madhubanti Chatterjee, Amitava Jadavpur Univ Dept Elect Engn Kolkata 700032 India
A novel optimal multilevel thresholding algorithm for histogram-based image segmentation is presented in this paper. The proposed algorithm presents an improved variant of PSO, a relatively recently introduced stochas... 详细信息
来源: 评论
Enhanced comprehensive learning particle swarm optimization
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2014年 242卷 265-276页
作者: Yu, Xiang Zhang, Xueqing Hong Kong Univ Sci & Technol Dept Civil & Environm Engn Kowloon Hong Kong Peoples R China
comprehensive learning particle swarm optimization (CLPSO) is a state-of-the-art metaheuristic that encourages a particle to learn from different exemplars on different dimensions. It is able to locate the global opti... 详细信息
来源: 评论
A comprehensive learning based swarm optimization approach for feature selection in gene expression data
收藏 引用
HELIYON 2024年 第17期10卷 e37165页
作者: Easwaran, Subha Venugopal, Jothi Prakash Subramanian, Arul Antran Vijay Sundaram, Gopikrishnan Naseeba, Beebi Karpagam Coll Engn Dept Sci & Humanities Coimbatore 641032 Tamil Nadu India Karpagam Coll Engn Dept Informat Technol Coimbatore 641032 Tamil Nadu India Karpagam Coll Engn Dept Comp Sci & Engn Coimbatore 641032 Tamil Nadu India VIT AP Univ Sch Comp Sci & Engn Amaravathi 522241 Andhra Pradesh India
Gene expression data analysis is challenging due to the high dimensionality and complexity of the data. Feature selection, which identifies relevant genes, is a common preprocessing step. We propose a comprehensive Le... 详细信息
来源: 评论
A modified hybrid particle swarm optimization based on comprehensive learning and dynamic multi-swarm strategy
收藏 引用
SOFT COMPUTING 2024年 第5期28卷 3879-3903页
作者: Wang, Rui Hao, Kuangrong Chen, Lei Liu, Xiaoyan Zhu, Xiuli Zhao, Chenwei Donghua Univ Minist Educ Coll Informat Sci & Technol Engn Res Ctr Digitized Text & Apparel Technol Shanghai 201620 Peoples R China
Particle swarm optimization (PSO) is a simple yet efficient population-based algorithm that handles various optimization problems. Nevertheless, diversity and convergence are two significant PSO limits, particularly w... 详细信息
来源: 评论