In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical e...
详细信息
In this chapter, we introduce the basis of computational chemistry and discuss how computational methods have been extended to some biological properties and toxicology, in particular. Since about 20 years, chemical experimentation is more and more replaced by modeling and virtual experimentation, using a large core of mathematics, chemistry, physics, and algorithms. Then we see how animal experiments, aimed at providing a standardized result about a biological property, can be mimicked by new in silico methods. Our emphasis here is on toxicology and on predicting properties through chemical structures. Two main streams of such models are available: models that consider the whole molecular structure to predict a value, namely QSAR (Quantitative Structure Activity Relationships), and models that find relevant substructures to predict a class, namely SAR. The term in silico discovery is applied to chemical design, to computational toxicology, and to drug discovery. We discuss how the experimental practice in biological science is moving more and more toward modeling and simulation. Such virtual experiments confirm hypotheses, provide data for regulation, and help in designing new chemicals. less
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for...
详细信息
The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many
computer-generated models have revolutionized how reconstructions of violent events, such as police use of force, are both performed and visualized. Yet, many experts in the legal and forensic disciplines do not under...
详细信息
computer-generated models have revolutionized how reconstructions of violent events, such as police use of force, are both performed and visualized. Yet, many experts in the legal and forensic disciplines do not understand them at a level required to use them effectively or create credible arguments supporting their findings. Simply put, models are a simplification of reality. Hence, models permit human programmers to specify the simplified behavior of a system. Since model parameters dictate the system's behavior, the programmer must document and provide justification for the selection of model parameters. The model structure, together with the selected parameters, form the backbone supporting the forensic investigator's conclusions. This paper will begin with an overview of the usefulness of models in forensic investigations and follow with an example of how a model is constructed and applied in use of force cases. The selected cases are particularly relevant to incidents commonly encountered in law enforcement, frequently leading to litigation.
作者:
Cabo, CandidoCUNY
New York City Coll Technol Doctoral Program Comp Sci Dept Comp Syst New York NY USA CUNY
New York City Coll Technol Dept Comp Syst 300 Jay St Brooklyn NY 11201 USA
Prolongation of the action potential duration (APD) could prevent reentrant arrhythmias if prolongation occurs at the fast excitation rates of tachycardia with minimal prolongation at slow excitation rates (i.e., if p...
详细信息
Prolongation of the action potential duration (APD) could prevent reentrant arrhythmias if prolongation occurs at the fast excitation rates of tachycardia with minimal prolongation at slow excitation rates (i.e., if prolongation is positive rate-dependent). APD prolongation by current anti-arrhythmic agents is either reverse (larger APD prolongation at slow rates than at fast rates) or neutral (similar APD prolongation at slow and fast rates), which may not result in an effective anti-arrhythmic action. In this report we show that, in computer models of the human ventricular action potential, the combined modulation of both depolarizing and repolarizing ion currents results in a stronger positive rate-dependent APD prolongation than modulation of repolarizing potassium currents. A robust positive rate-dependent APD prolongation correlates with an acceleration of phase 2 repolarization and a deceleration of phase 3 repolarization, which leads to a triangulation of the action potential. A positive rate-dependent APD prolongation decreases the repolarization reserve with respect to control, which can be managed by interventions that prolong APD at fast excitation rates and shorten APD at slow excitation rates. For both computer models of the action potential, I-CaL and I-K1 are the most important ion currents to achieve a positive rate-dependent APD prolongation. In conclusion, multichannel modulation of depolarizing and repolarizing ion currents, with ion channel activators and blockers, results in a robust APD prolongation at fast excitation rates, which should be anti-arrhythmic, while minimizing APD prolongation at slow heart rates, which should reduce pro-arrhythmic risks.
ABSTRACT: In estimating the costs of a reservoir project, it is difficult to produce accurate costs without performing a detailed design and quantity takeoff. The computerized procedure presented in this article provi...
详细信息
ABSTRACT. The critical role of political processes in water resource projects has recently been placed in a new perspective [Hall, 1970]. The “political hassle” period of institutional interaction which serves to re...
详细信息
Barrett's esophagus (BE) is the precursor and the biggest risk factor for esophageal adenocarcinoma (EAC), the solid cancer with the fastest rising incidence in the US and western world. Current strategies to decr...
详细信息
Barrett's esophagus (BE) is the precursor and the biggest risk factor for esophageal adenocarcinoma (EAC), the solid cancer with the fastest rising incidence in the US and western world. Current strategies to decrease morbidity and mortality from EAC have focused on identifying and surveying patients with BE using upper endoscopy. An accurate estimate of the number of patients with BE in the population is important to inform public health policy and to prioritize resources for potential screening and management programs. However, the true prevalence of BE is difficult to ascertain because the condition frequently is symptomatically silent, and the numerous clinical studies that have analyzed BE prevalence have produced a wide range of estimates. The aim of this study was to use a computer simulation disease model of EAC to determine the estimates for BE prevalence that best align with US Surveillance Epidemiology and End Results (SEER) cancer registry data. A previously developed mathematical model of EAC was modified to perform this analysis. The model consists of six health states: normal, gastroesophageal reflux disease (GERD), BE, undetected cancer, detected cancer, and death. Published literature regarding the transition rates between these states were used to provide boundaries. During the one million computer simulations that were performed, these transition rates were systematically varied, producing differing prevalences for the numerous health states. Two filters were sequentially applied to select out superior simulations that were most consistent with clinical data. First, among these million simulations, the 1000 that best reproduced SEER cancer incidence data were selected. Next, of those 1000 best simulations, the 100 with an overall calculated BE to Detected Cancer rates closest to published estimates were selected. Finally, the prevalence of BE in the final set of best 100 simulations was analyzed. We present histogram data depicting BE prevalences
暂无评论