咨询与建议

限定检索结果

文献类型

  • 174 篇 期刊文献
  • 13 篇 会议

馆藏范围

  • 187 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 187 篇 工学
    • 184 篇 控制科学与工程
    • 177 篇 电气工程
    • 8 篇 计算机科学与技术...
    • 2 篇 机械工程
    • 1 篇 动力工程及工程热...
    • 1 篇 土木工程
    • 1 篇 化学工程与技术
    • 1 篇 交通运输工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 地球物理学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 187 篇 computer vision ...
  • 37 篇 deep learning fo...
  • 25 篇 object detection
  • 25 篇 cameras
  • 22 篇 three-dimensiona...
  • 20 篇 feature extracti...
  • 18 篇 task analysis
  • 18 篇 segmentation and...
  • 18 篇 deep learning in...
  • 15 篇 training
  • 14 篇 recognition
  • 12 篇 robots
  • 12 篇 agricultural aut...
  • 11 篇 data sets for ro...
  • 11 篇 deep learning in...
  • 11 篇 visual tracking
  • 11 篇 point cloud comp...
  • 10 篇 visual learning
  • 10 篇 perception for g...
  • 10 篇 visualization

机构

  • 5 篇 univ michigan de...
  • 3 篇 shanghai jiao to...
  • 3 篇 zhejiang univ zh...
  • 3 篇 queensland univ ...
  • 3 篇 shanghai jiao to...
  • 3 篇 hong kong univ s...
  • 3 篇 queensland univ ...
  • 3 篇 silesian tech un...
  • 2 篇 univ michigan ro...
  • 2 篇 shanghai ai lab ...
  • 2 篇 caltech jet prop...
  • 2 篇 kyoto univ grad ...
  • 2 篇 chinese acad sci...
  • 2 篇 east china univ ...
  • 2 篇 sun yat sen univ...
  • 2 篇 univ sydney aust...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 carnegie mellon ...
  • 2 篇 czech tech univ ...
  • 2 篇 mit comp sci & a...

作者

  • 5 篇 billings gideon
  • 5 篇 johnson-roberson...
  • 4 篇 peynot thierry
  • 4 篇 perez tristan
  • 4 篇 dansereau donald...
  • 4 篇 milford michael
  • 3 篇 bui tat hieu
  • 3 篇 son yeong gwang
  • 3 篇 kiyokawa takuya
  • 3 篇 tsai dorian
  • 3 篇 corke peter
  • 3 篇 xiang zhiyu
  • 2 篇 wang yiming
  • 2 篇 keipour azarakhs...
  • 2 篇 tadeusz szkodny
  • 2 篇 beksi william j.
  • 2 篇 xin jianjia
  • 2 篇 bryson mitch
  • 2 篇 upcroft ben
  • 2 篇 williams stefan

语言

  • 187 篇 英文
检索条件"主题词=Computer Vision for Automation"
187 条 记 录,以下是1-10 订阅
排序:
GelBelt: A vision-Based Tactile Sensor for Continuous Sensing of Large Surfaces
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第2期10卷 2016-2023页
作者: Mirzaee, Mohammad Amin Huang, Hung-Jui Yuan, Wenzhen Univ Illinois Champaign Urbana Champaign IL 61801 USA Carnegie Mellon Univ Pittsburgh PA 15213 USA
Scanning large-scale surfaces is widely demanded in surface reconstruction applications and detecting defects in industries' quality control and maintenance stages. Traditional vision-based tactile sensors have sh... 详细信息
来源: 评论
Temporally Consistent Object 6D Pose Estimation for Robot Control
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第1期10卷 56-63页
作者: Zorina, Kateryna Priban, Vojtech Fourmy, Mederic Sivic, Josef Petrik, Vladimir Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague 16000 Czech Republic
Single-view RGB object pose estimators have reached a level of precision and efficiency that makes them good candidates for vision-based robot control. However, off-the-shelf methods lack temporal consistency and robu... 详细信息
来源: 评论
SDPENet: A Lightweight Spacecraft Pose Estimation Network With Discrete Euler Angle Probability Distribution
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第4期10卷 3086-3093页
作者: Zhou, Hang Yao, Lu She, Haoping Si, Weiyong Beijing Inst Technol Sch Aerosp & Engn Beijing 100081 Peoples R China Space Pioneer Beijing 100076 Peoples R China Univ Essex Sch Comp Sci & Elect Engn Colchester CO4 3SQ England
Utilizing deep learning techniques for spacecraft pose estimation enables using low-cost sensors like monocular cameras. However, the existing methods have drawbacks, such as complex models or low estimation accuracy.... 详细信息
来源: 评论
3DGS-CD: 3D Gaussian Splatting-Based Change Detection for Physical Object Rearrangement
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第3期10卷 2662-2669页
作者: Lu, Ziqi Ye, Jianbo Leonard, John MIT Comp Sci & Artificial Intelligence Lab Cambridge MA 02139 USA
We present 3DGS-CD, the first 3D Gaussian Splatting (3DGS)-based method for detecting physical object rearrangements in 3D scenes. Our approach estimates 3D object-level changes by comparing two sets of unaligned imag... 详细信息
来源: 评论
Targeted Hard Sample Synthesis Based on Estimated Pose and Occlusion Error for Improved Object Pose Estimation
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第2期10卷 1281-1288页
作者: Li, Alan Schoellig, Angela P. Univ Toronto Inst Aerosp Studies Dynam Syst Lab Toronto ON M5S 1A1 Canada Tech Univ Munich TUM D-80333 Munich Germany
6D Object pose estimation is a fundamental component in robotics enabling efficient interaction with the environment. It is particularly challenging in bin-picking applications, where objects may be textureless and in... 详细信息
来源: 评论
GARD: A Geometry-Informed and Uncertainty-Aware Baseline Method for Zero-Shot Roadside Monocular Object Detection
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第2期10卷 1297-1304页
作者: Peng, Yuru Wang, Beibei Yu, Zijian Zhang, Lu Ji, Jianmin Zhang, Yu Zhang, Yanyong Univ Sci & Technol China Inst Adv Technol Hefei 230026 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230026 Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei 230026 Peoples R China Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230026 Peoples R China Suzhou Shuzhi Technol Grp Co Ltd Suzhou 215000 Peoples R China
Roadside camera-based perception methods are in high demand for developing efficient vehicle-infrastructure collaborative perception systems. By focusing on object-level depth prediction, we explore the potential bene... 详细信息
来源: 评论
GAP-RL: Grasps as Points for RL Towards Dynamic Object Grasping
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第1期10卷 40-47页
作者: Xie, Pengwei Chen, Siang Chen, Qianrun Tang, Wei Hu, Dingchang Dai, Yixiang Chen, Rui Wang, Guijin Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Shanghai AI Lab Shanghai 200232 Peoples R China Vanderbilt Univ Engn Sch Risk Reliabil & Resilience Engn Nashville TN 37212 USA Tsinghua Univ Shenzhen Int Grad Sch Dept Elect Engn Shenzhen 518071 Peoples R China Tsinghua Univ Dept Mech Engn Beijing 100084 Peoples R China
Dynamic grasping of moving objects in complex, continuous motion scenarios remains challenging. Reinforcement Learning (RL) has been applied in various robotic manipulation tasks, benefiting from its closed-loop prope... 详细信息
来源: 评论
H-PCC: Point Cloud Compression With Hybrid Mode Selection and Content Adaptive Down-Sampling
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第4期10卷 3054-3061页
作者: Liu, Bowen Chen, Yu Wang, Boyang Yang, Mingyu Kim, Hun-Seok Univ Michigan EECS Dept Ann Arbor MI 48109 USA
LiDAR sensors are integral to autonomous driving and augmented reality applications, providing essential depth information. However, managing the substantial volume of LiDAR point cloud data is crucial for practical a... 详细信息
来源: 评论
MetaMVUC: Active Learning for Sample-Efficient Sim-to-Real Domain Adaptation in Robotic Grasping
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第4期10卷 3644-3651页
作者: Gilles, Maximilian Furmans, Kai Rayyes, Rania Karlsruhe Inst Technol KIT D-76131 Karlsruhe Germany
Learning-based robotic grasping systems typically rely on large-scale datasets for training. However, collecting such datasets in the real-world is both costly and time-consuming. Synthetic data generation data is a c... 详细信息
来源: 评论
Stereo-LiDAR Fusion by Semi-Global Matching With Discrete Disparity-Matching Cost and Semidensification
收藏 引用
IEEE ROBOTICS AND automation LETTERS 2025年 第5期10卷 4548-4555页
作者: Yao, Yasuhiro Ishikawa, Ryoichi Oishi, Takeshi Univ Tokyo Inst Ind Sci Tokyo 1538505 Japan
We present a real-time, non-learning depth estimation method that fuses Light Detection and Ranging (LiDAR) data with stereo camera input. Our approach comprises three key techniques: Semi-Global Matching (SGM) stereo... 详细信息
来源: 评论