咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 2 篇 computing method...
  • 1 篇 hybrid noise
  • 1 篇 ccs concepts
  • 1 篇 matrix recovery
  • 1 篇 artificial intel...
  • 1 篇 machine learning...
  • 1 篇 generalization b...

机构

  • 1 篇 univ toronto on
  • 1 篇 meta real labs r...
  • 1 篇 nanjing univ sci...
  • 1 篇 google mountain ...
  • 1 篇 univ technol syd...
  • 1 篇 mit cambridge ma...
  • 1 篇 hong kong baptis...
  • 1 篇 unity technol ca...
  • 1 篇 riken aip chuo k...
  • 1 篇 tech univ munich...
  • 1 篇 brown univ comp ...
  • 1 篇 nanjing univ sci...
  • 1 篇 nvidia santa cla...
  • 1 篇 brown univ provi...

作者

  • 1 篇 xie yiheng
  • 1 篇 saito shunsuke
  • 1 篇 tombari federico
  • 1 篇 litany or
  • 1 篇 tompkin james
  • 1 篇 takikawa towaki
  • 1 篇 han bo
  • 1 篇 yan shiqin
  • 1 篇 sridhar srinath
  • 1 篇 wei yang
  • 1 篇 khan numair
  • 1 篇 gong chen
  • 1 篇 sitzmann vincent
  • 1 篇 chen shuo
  • 1 篇 ye shanshan

语言

  • 2 篇 英文
检索条件"主题词=Computing methodologies -> Machine learning"
2 条 记 录,以下是1-10 订阅
排序:
Robust learning under Hybrid Noise
收藏 引用
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 2025年 第2期16卷 1-27页
作者: Wei, Yang Chen, Shuo Ye, Shanshan Han, Bo Gong, Chen Nanjing Univ Sci & Technol Sch Comp Sci Nanjing Peoples R China RIKEN AIP Chuo ku Tokyo Japan Univ Technol Sydney Broadway Australia Hong Kong Baptist Univ Hong Kong Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China
Feature noise and label noise are ubiquitous in practical scenarios, which pose great challenges for training a robust machine learning model. Most previous approaches usually deal with only a single problem of either... 详细信息
来源: 评论
Neural Fields in Visual computing and Beyond
收藏 引用
COMPUTER GRAPHICS FORUM 2022年 第2期41卷 641-676页
作者: Xie, Yiheng Takikawa, Towaki Saito, Shunsuke Litany, Or Yan, Shiqin Khan, Numair Tombari, Federico Tompkin, James Sitzmann, Vincent Sridhar, Srinath Brown Univ Providence RI 02912 USA Unity Technol San Francisco CA 94107 USA Brown Univ Comp Sci Providence RI 02912 USA Univ Toronto Toronto ON Canada NVIDIA Santa Clara CA USA Meta Real Labs Res Burlingame CA USA Google Mountain View CA 94043 USA Tech Univ Munich Munich Germany MIT Cambridge MA 02139 USA
Recent advances in machine learning have led to increased interest in solving visual computing problems using methods that employ coordinate-based neural networks. These methods, which we call neural fields, parameter... 详细信息
来源: 评论