In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps fro...
详细信息
ISBN:
(纸本)9781728113777
In this paper we present an approach for 6 DoF panoramic videos from omni-directional stereo (ODS) images using convolutional neural networks (CNNs). More specifically, we use CNNs to generate panoramic depth maps from ODS images in real-time. These depth maps would then allow for re-projection of panoramic images thus providing 6 DoF to a viewer in virtual reality (VR). As the boundaries of a panoramic image must touch in order to envelope a viewer, we introduce a border weighted loss function as well as new error metrics specifically tailored for panoramic images. We show experimentally that training with our border weighted loss function improves performance by benchmarking a baseline skip-connected encoder-decoder style network as well as other state-of-the-art methods in depth map estimation from mono and stereo images. Finally, a practical application for VR using real world data is also demonstrated.
Three-dimensional (3-D) scene reconstruction is one of the key techniques in Augmented Reality (AR), which is related to the integration of image processing and display systems of complex information. Stereo matching ...
详细信息
ISBN:
(纸本)9781728113777
Three-dimensional (3-D) scene reconstruction is one of the key techniques in Augmented Reality (AR), which is related to the integration of image processing and display systems of complex information. Stereo matching is a computer vision based approach for 3-D scene reconstruction. In this paper, we explore an improved stereo matching network, SLED-Net, in which a Single Long Encoder-Decoder is proposed to replace the stacked hourglass network in PSM-Net for better contextual information learning. We compare SLED-Net to state-of-the-art methods recently published, and demonstrate its superior performance on Scene Flow and KITTI2015 test sets.
暂无评论