咨询与建议

限定检索结果

文献类型

  • 107 篇 期刊文献
  • 73 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 182 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 133 篇 电气工程
    • 80 篇 计算机科学与技术...
    • 28 篇 材料科学与工程(可...
    • 18 篇 软件工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 10 篇 信息与通信工程
    • 8 篇 机械工程
    • 5 篇 仪器科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 光学工程
  • 23 篇 理学
    • 23 篇 物理学
    • 5 篇 化学
  • 11 篇 管理学
    • 11 篇 管理科学与工程(可...

主题

  • 182 篇 computing-in-mem...
  • 22 篇 computer archite...
  • 16 篇 random access me...
  • 16 篇 energy efficienc...
  • 15 篇 artificial intel...
  • 15 篇 sram
  • 14 篇 rram
  • 12 篇 reram
  • 12 篇 neural network
  • 11 篇 memristor
  • 11 篇 common informati...
  • 10 篇 transistors
  • 9 篇 edge computing
  • 8 篇 neural networks
  • 8 篇 hardware
  • 8 篇 non-volatile mem...
  • 7 篇 stt-mram
  • 7 篇 voltage
  • 7 篇 logic gates
  • 7 篇 microprocessors

机构

  • 11 篇 univ chinese aca...
  • 11 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 7 篇 beihang univ sch...
  • 6 篇 peking univ sch ...
  • 4 篇 natl tsing hua u...
  • 4 篇 minist ind & inf...
  • 4 篇 peking univ inst...
  • 4 篇 natl taiwan univ...
  • 4 篇 natl tsing hua u...
  • 3 篇 natl tsing hua u...
  • 3 篇 chinese acad sci...
  • 3 篇 fudan univ sch m...
  • 3 篇 hanyang univ div...
  • 3 篇 beijing adv inno...
  • 3 篇 zhejiang univ co...
  • 3 篇 univ sci & techn...
  • 3 篇 anhui univ sch i...
  • 2 篇 penn state univ ...
  • 2 篇 tsinghua univ el...

作者

  • 15 篇 liu yongpan
  • 14 篇 yang huazhong
  • 12 篇 chang meng-fan
  • 10 篇 yue jinshan
  • 9 篇 li xueqing
  • 8 篇 zhao weisheng
  • 7 篇 tang wenjun
  • 7 篇 dou chunmeng
  • 6 篇 reis dayane
  • 6 篇 kang wang
  • 6 篇 si xin
  • 6 篇 wang linfang
  • 5 篇 yoo hoi-jun
  • 5 篇 shang dashan
  • 5 篇 kim sangjin
  • 5 篇 huang yuxuan
  • 5 篇 liu qi
  • 5 篇 zhang feng
  • 5 篇 bai jinyu
  • 5 篇 tang kea-tiong

语言

  • 179 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Computing-in-memory"
182 条 记 录,以下是11-20 订阅
排序:
Array-level boosting method with spatial extended allocation to improve the accuracy of memristor based computing-in-memory chips
收藏 引用
Science China(Information Sciences) 2021年 第6期64卷 80-88页
作者: Wenqiang ZHANG Bin GAO Peng YAO Jianshi TANG He QIAN Huaqiang WU Institute of Microelectronics Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua University Institute of Microelectronics Beijing National Research Center for Information Science and Technology (BNRist)Tsinghua University
Memristor based computing-in-memory chips have shown the potentials to accelerate deep neural networks with high energy efficiency. Due to the inherent filament-based conductive mechanism of the memristor, the reading... 详细信息
来源: 评论
computing-in-memory with Ferroelectric Materials and Beyond
Computing-in-Memory with Ferroelectric Materials and Beyond
收藏 引用
International VLSI Symposium on Technology, Systems and Applications (VLSI-TSA/VLSI-DAT)
作者: Lu, Darsen D. Natl Cheng Kung Univ Inst Microelect Dept Elect Engn Tainan Taiwan
Recent discovery of hafnium-based ferroelectric (FE) materials opens up numerous CMOS-compatible memory device opportunities: FE capacitors, FE-FETs, and FE tunnel junctions. These devices offer significant advantages... 详细信息
来源: 评论
A Robust 8-Bit Non-Volatile computing-in-memory Core for Low-Power Parallel MAC Operations
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2020年 第6期67卷 1867-1880页
作者: Zhang, Sai Huang, Kejie Shen, Haibin Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310058 Peoples R China
The Artificial Intelligence (AI) in edge computing is requesting new processing units with a much higher computing-power ratio. The emerging resistive Non-Volatile memory (NVM) with the in-memory computing capability ... 详细信息
来源: 评论
An Energy-Efficient computing-in-memory (CiM) Scheme Using Field-Free Spin-Orbit Torque (SOT) Magnetic RAMs
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN computing 2023年 第2期11卷 331-342页
作者: Wu, Bi Zhu, Haonan Reis, Dayane Wang, Zhaohao Wang, Ying Chen, Ke Liu, Weiqiang Lombardi, Fabrizio Hu, Xiaobo Sharon Nanjing Univ Aeronaut & Astronaut Coll Elect & Informat Engn Nanjing 211106 Peoples R China Minist Ind & Informat Technol Key Lab Aerosp Integrated Circuits & Microsyst Nanjing 211106 Peoples R China Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46656 USA Univ S Florida Dept Comp Sci & Engn Tampa FL 33620 USA Beihang Univ Fert Beijing Res Inst Beijing Adv Innovat Ctr Big Data & Brain Comp Sch Integrated Circuit Sci & Engn Beijing 100191 Peoples R China Chinese Acad Sci Inst Comp Technol Beijing 100190 Peoples R China Northeastern Univ Dept Elect & Comp Engn Boston MA 02115 USA
The separation of memory and computing units in the von Neumann architecture leads to undesirable energy consumption due to data movement and insufficient memory bandwidth. Energy-efficient in-memory computing platfor... 详细信息
来源: 评论
RDCIM: RISC-V Supported Full-Digital computing-in-memory Processor With High Energy Efficiency and Low Area Overhead
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2024年 第4期71卷 1719-1732页
作者: Yi, Wente Mo, Kefan Wang, Wenjia Zhou, Yitong Zeng, Yejun Yuan, Zihan Cheng, Bojun Pan, Biao Beihang Univ Sch Integrated Circuit Sci & Engn Beijing 100191 Peoples R China Hong Kong Univ Sci & Technol Guangzhou Microelect Thrust Funct Hub Guangzhou 510000 Peoples R China
Digital computing-in-memory (DCIM) that merges computing logic into memory has been proven to be an efficient architecture for accelerating multiply-and-accumulates (MACs). However, low energy efficiency and high area... 详细信息
来源: 评论
A 16.38TOPS and 4.55POPS/W SRAM computing-in-memory Macro for Signed Operands Computation and Batch Normalization Implementation
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2024年 第4期71卷 1706-1718页
作者: Qiao, Xin Guo, Qingyu Tang, Xiyuan Song, Jiahao Wei, Renjie Li, Meng Wang, Runsheng Wang, Yuan Peking Univ MPW Ctr Sch Integrated Circuits Key Lab Microelect Devices & Circuits MoE Beijing 100871 Peoples R China Beijing Adv Innovat Ctr Integrated Circuits Beijing 100871 Peoples R China
Edge artificial intelligence applications impose rigorous demands on local hardware to improve throughput and energy efficiency. computing-in-memory (CIM) architectures provide high parallel and energy-efficient solut... 详细信息
来源: 评论
A computing-in-memory-Based One-Class Hyperdimensional computing Model for Outlier Detection
收藏 引用
IEEE TRANSACTIONS ON COMPUTERS 2024年 第6期73卷 1559-1574页
作者: Wang, Ruixuan Moon, Sabrina Hassan Hu, Xiaobo Sharon Jiao, Xun Reis, Dayane Villanova Univ Dept Elect & Comp Engn Villanova PA 19085 USA Univ S Florida Dept Comp Sci & Engn Tampa FL 33620 USA Univ Notre Dame Dept Comp Sci & Engn Notre Dame IN 46556 USA
In this work, we present ODHD, an algorithm for outlier detection based on hyperdimensional computing (HDC), a non-classical learning paradigm. Along with the HDC-based algorithm, we propose IM-ODHD, a computing-in-me... 详细信息
来源: 评论
Accuracy Optimization With the Framework of Non-Volatile computing-in-memory Systems
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2022年 第2期69卷 518-529页
作者: Huang, Yuxuan He, Yifan Yue, Jinshan Yang, Huazhong Liu, Yongpan Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Chinese Acad Sci Inst Microelect Beijing 100029 Peoples R China
computing-in-memory (CIM) is a new architecture which is more energy-efficient than the Von Neumann architecture due to the fact that it performs calculation in the memory units which can reduce a large amount of data... 详细信息
来源: 评论
A CFMB STT-MRAM-Based computing-in-memory Proposal With Cascade computing Unit for Edge AI Devices
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2024年 第1期71卷 187-200页
作者: Zhou, Yongliang Zhou, Zixuan Wei, Yiming Yang, Zhen Lin, Xiao Dai, Chenghu Hao, Licai Peng, Chunyu Cai, Hao Wu, Xiulong Anhui Univ Sch Integrated Circuits Hefei 230601 Peoples R China Anhui Prov High Performance Integrated Circuit Eng Hefei 230601 Peoples R China Anhui Prov High Performance Integrated Circuit Eng Hefei 230601 Peoples R China Southeast Univ Sch Elect Sci & Engn Natl ASIC Syst Engn Ctr Nanjing 210000 Peoples R China
The application of non-volatile memory technology is increasingly attractive for computing-in-memory (CIM) owing to high integration density and negligible standby power consumption. This study proposes an spin-transf... 详细信息
来源: 评论
Extreme Partial-Sum Quantization for Analog computing-in-memory Neural Network Accelerators
收藏 引用
ACM JOURNAL ON EMERGING TECHNOLOGIES IN computing SYSTEMS 2022年 第4期18卷 1–19页
作者: Kim, Yulhwa Kim, Hyungjun Kim, Jae-Joon Pohang Univ Sci & Technol 77 Cheongam Ro Pohang 37673 Gyeongsangbuk D South Korea Seoul Natl Univ 1 Gwanak Ro Seoul 08826 South Korea
In Analog computing-in-memory (CIM) neural network accelerators, analog-to-digital converters (ADCs) are required to convert the analog partial sums generated from a CIM array to digital values. The overhead from ADCs... 详细信息
来源: 评论