咨询与建议

限定检索结果

文献类型

  • 107 篇 期刊文献
  • 73 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 182 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 175 篇 工学
    • 133 篇 电气工程
    • 80 篇 计算机科学与技术...
    • 28 篇 材料科学与工程(可...
    • 18 篇 软件工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 10 篇 信息与通信工程
    • 8 篇 机械工程
    • 5 篇 仪器科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 光学工程
  • 23 篇 理学
    • 23 篇 物理学
    • 5 篇 化学
  • 11 篇 管理学
    • 11 篇 管理科学与工程(可...

主题

  • 182 篇 computing-in-mem...
  • 22 篇 computer archite...
  • 16 篇 random access me...
  • 16 篇 energy efficienc...
  • 15 篇 artificial intel...
  • 15 篇 sram
  • 14 篇 rram
  • 12 篇 reram
  • 12 篇 neural network
  • 11 篇 memristor
  • 11 篇 common informati...
  • 10 篇 transistors
  • 9 篇 edge computing
  • 8 篇 neural networks
  • 8 篇 hardware
  • 8 篇 non-volatile mem...
  • 7 篇 stt-mram
  • 7 篇 voltage
  • 7 篇 logic gates
  • 7 篇 microprocessors

机构

  • 11 篇 univ chinese aca...
  • 11 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 7 篇 beihang univ sch...
  • 6 篇 peking univ sch ...
  • 4 篇 natl tsing hua u...
  • 4 篇 minist ind & inf...
  • 4 篇 peking univ inst...
  • 4 篇 natl taiwan univ...
  • 4 篇 natl tsing hua u...
  • 3 篇 natl tsing hua u...
  • 3 篇 chinese acad sci...
  • 3 篇 fudan univ sch m...
  • 3 篇 hanyang univ div...
  • 3 篇 beijing adv inno...
  • 3 篇 zhejiang univ co...
  • 3 篇 univ sci & techn...
  • 3 篇 anhui univ sch i...
  • 2 篇 penn state univ ...
  • 2 篇 tsinghua univ el...

作者

  • 15 篇 liu yongpan
  • 14 篇 yang huazhong
  • 12 篇 chang meng-fan
  • 10 篇 yue jinshan
  • 9 篇 li xueqing
  • 8 篇 zhao weisheng
  • 7 篇 tang wenjun
  • 7 篇 dou chunmeng
  • 6 篇 reis dayane
  • 6 篇 kang wang
  • 6 篇 si xin
  • 6 篇 wang linfang
  • 5 篇 yoo hoi-jun
  • 5 篇 shang dashan
  • 5 篇 kim sangjin
  • 5 篇 huang yuxuan
  • 5 篇 liu qi
  • 5 篇 zhang feng
  • 5 篇 bai jinyu
  • 5 篇 tang kea-tiong

语言

  • 179 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Computing-in-memory"
182 条 记 录,以下是51-60 订阅
排序:
Sparsity-Aware Clamping Readout Scheme for High Parallelism and Low Power Nonvolatile computing-in-memory based on Resistive memory  53
Sparsity-Aware Clamping Readout Scheme for High Parallelism ...
收藏 引用
IEEE International Symposium on Circuits and Systems (IEEE ISCAS)
作者: Wang, Linfang Ye, Wang An, Junjie Dou, Chunmeng Liu, Qi Chang, Meng-Fan Liu, Ming Chinese Acad Sci Inst Microelect Beijing Peoples R China Fudan Univ Shanghai Peoples R China Natl Tsing Hua Univ Hsinchu Taiwan Univ Chinese Acad Sci Beijing Peoples R China
The input parallelism of resistive memory (RRAM) based nonvolatile computing-in-memory (nvCIM) structure is limited by the signal margin as well as the readout precision. In this work, we propose a sparsity-aware clam... 详细信息
来源: 评论
Considerations of Integrating computing-in-memory and Processing-In-Sensor into Convolutional Neural Network Accelerators for Low-Power Edge Devices  39
Considerations of Integrating Computing-In-Memory and Proces...
收藏 引用
39th Symposium on VLSI Technology / 33rd Symposium on VLSI Circuits
作者: Tang, Kea-Tiong Wei, Wei-Chen Yeh, Zuo-Wei Hsu, Tzu-Hsiang Chiu, Yen-Cheng Xue, Cheng-Xin Kuo, Yu -Chun Wen, Tai-Hsing Ho, Mon-Shu Lo, Chung-Chuan Liu, Ren-Shuo Hsieh, Chih-Cheng Chang, Meng-Fan Natl Tsing Hua Univ Hsinchu Taiwan Natl Chung IIsin Univ Taichung Taiwan
In quest to execute emerging deep learning algorithms at edge devices, developing low-power and low-latency deep learning accelerators (DLAs) have become top priority. To achieve this goal, data processing techniques ... 详细信息
来源: 评论
CIM-KF: Efficient computing-in-memory Circuits for Full-Process Execution of Kalman Filter Algorithm  24
CIM-KF: Efficient Computing-in-memory Circuits for Full-Proc...
收藏 引用
53rd International Conference on Parallel Processing (ICPP)
作者: Xiao, Pingdan Hong, Qinghui Du, Sichun Zhang, Jiliang Hunan Univ Changsha Peoples R China
Kalman Filter (KF) algorithm, which can solve the state estimation problem of multi-variable and complex dynamical system, plays a pivotal role in a multitude of engineering scenarios. However, the traditional digital... 详细信息
来源: 评论
Challenges in Circuit Designs of Nonvolatile-memory based computing-in-memory for AI Edge Devices  16
Challenges in Circuit Designs of Nonvolatile-memory based co...
收藏 引用
16th International System-on-Chip Design Conference (ISOCC)
作者: Xue, Cheng-Xin Chang, Meng-Fan Natl Tsing Hua Univ Dept Elect Engn Hsinchu Taiwan
The "memory wall" imposed by the von-Neumann computer architecture limits the bandwidth between the processor and memory, thereby imposing a critical bottleneck in system performance. Emerging memory devices... 详细信息
来源: 评论
Hierarchical Non-Structured Pruning for computing-in-memory Accelerators with Reduced ADC Resolution Requirement
Hierarchical Non-Structured Pruning for Computing-In-Memory ...
收藏 引用
Design, Automation and Test in Europe Conference and Exhibition (DATE)
作者: Xue, Wenlu Bai, Jinyu Sun, Sifan Kang, Wang Beihang Univ Sch Integrated Circuit Sci & Engn Beijing 100191 Peoples R China
The crossbar architecture, which is comprised of novel nano-devices, enables high-speed and energy-efficient computing-in-memory (CIM) for neural networks. However, the overhead from analog-to-digital converters (ADCs... 详细信息
来源: 评论
A 2.53μW/channel Event-Driven Neural Spike Sorting Processor with Sparsity-Aware computing-in-memory Macros  56
A 2.53μW/channel Event-Driven Neural Spike Sorting Processo...
收藏 引用
56th IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Jiang, Hao Zheng, Jiapei Wang, Yunzhengmao Zhang, Jinshan Zhu, Haozhe Lyu, Liangjian Chen, Yingping Chen, Chixiao Liu, Qi Fudan Univ Frontier Inst Chip & Syst State Key Lab Integrated Chips & Syst Shanghai Peoples R China East China Normal Univ Sch Commun & Elect Engn Shanghai Peoples R China
Spike sorting processors with high energy efficiency are widely used in large-scale neural signal processing tasks to monitor the activity of neurons in brains. This paper presents a low-power processor for high-accur... 详细信息
来源: 评论
Design Framework for SRAM-Based computing-in-memory Edge CNN Accelerators  53
Design Framework for SRAM-Based Computing-In-Memory Edge CNN...
收藏 引用
IEEE International Symposium on Circuits and Systems (IEEE ISCAS)
作者: Wang, Yimin Zou, Zhuo Zheng, Lirong Fudan Univ Shanghai Peoples R China
This paper presents an architectural framework and an evaluation model for Static Random Access memory (SRAM)-based computing-in-memory (CIM) edge Convolutional Neural Network (CNN) accelerators. To provide a baseline... 详细信息
来源: 评论
T-EAP: Trainable Energy-Aware Pruning for NVM-based computing-in-memory Architecture  4
T-EAP: Trainable Energy-Aware Pruning for NVM-based Computin...
收藏 引用
IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS) - Intelligent Technology in the Post-Pandemic Era
作者: Chang, Cheng-Yang Chuang, Yu-Chuan Chou, Kuang-Chao Wu, An-Yeu Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan
While convolutional neural networks (CNNs) are desired for outstanding performance in many applications, the energy consumption for inference becomes enormous. computing-in-memory architecture based on embedded nonvol... 详细信息
来源: 评论
C2IM: A Compact computing-in-memory Unit of 10 Transistors with Standard 6T SRAM  33
C<SUP>2</SUP>IM: A Compact Computing-In-Memory Unit of 10 Tr...
收藏 引用
33rd IEEE International System on Chip Conference (IEEE SOCC)
作者: Ren, Erxiang Luo, Li Liu, Zheyu Wei, Qi Qiao, Fei Beijing Jiaotong Univ Dept EE Beijing Peoples R China Tsinghua Univ Dept EE BNRist Beijing Peoples R China Tsinghua Univ Dept PI ERCNT Beijing Peoples R China
memory wall has been a major bottleneck that restrains the speed and power consumption of processors in the Von Neumann architecture. computing-in-memory (CIM) was proposed as a promising method to tackle the memory w... 详细信息
来源: 评论
A computing-in-memory Scheme with Series Bit-cell in STT-MRAM for Efficient Multi-bit Analog Multiplication
A Computing-in-memory Scheme with Series Bit-cell in STT-MRA...
收藏 引用
IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH)
作者: Hao, Zuolei Zhang, Yue Wang, Jinkai Wang, Hongyu Bai, Yining Wang, Guanda Zhao, Weisheng Beihang Univ Fert Beijing Res Inst MIIT Key Lab Spintron Sch Integrated Circuit Sci & Engn Beijing 100191 Peoples R China Beihang Univ Hefei Innovat Res Inst Nanoelect Sci & Technol Ctr Hefei 230012 Peoples R China
computing-in-memory (CIM) is widely studied to solve the Von Neumann bottleneck, which improves energy-efficient computing. In this work, we propose a CIM with series bit-cell (SBCIM) scheme, which can perform the mul... 详细信息
来源: 评论