咨询与建议

限定检索结果

文献类型

  • 106 篇 期刊文献
  • 73 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 181 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 174 篇 工学
    • 132 篇 电气工程
    • 79 篇 计算机科学与技术...
    • 28 篇 材料科学与工程(可...
    • 18 篇 软件工程
    • 17 篇 控制科学与工程
    • 15 篇 电子科学与技术(可...
    • 10 篇 信息与通信工程
    • 8 篇 机械工程
    • 5 篇 仪器科学与技术
    • 3 篇 生物医学工程(可授...
    • 2 篇 化学工程与技术
    • 1 篇 光学工程
  • 23 篇 理学
    • 23 篇 物理学
    • 5 篇 化学
  • 11 篇 管理学
    • 11 篇 管理科学与工程(可...

主题

  • 181 篇 computing-in-mem...
  • 21 篇 computer archite...
  • 16 篇 random access me...
  • 15 篇 artificial intel...
  • 15 篇 sram
  • 15 篇 energy efficienc...
  • 14 篇 rram
  • 12 篇 reram
  • 12 篇 neural network
  • 11 篇 memristor
  • 10 篇 transistors
  • 10 篇 common informati...
  • 9 篇 edge computing
  • 8 篇 neural networks
  • 8 篇 non-volatile mem...
  • 7 篇 stt-mram
  • 7 篇 voltage
  • 7 篇 logic gates
  • 7 篇 hardware
  • 7 篇 microprocessors

机构

  • 11 篇 univ chinese aca...
  • 11 篇 chinese acad sci...
  • 8 篇 tsinghua univ de...
  • 7 篇 beihang univ sch...
  • 6 篇 peking univ sch ...
  • 4 篇 natl tsing hua u...
  • 4 篇 minist ind & inf...
  • 4 篇 peking univ inst...
  • 4 篇 natl taiwan univ...
  • 4 篇 natl tsing hua u...
  • 3 篇 natl tsing hua u...
  • 3 篇 chinese acad sci...
  • 3 篇 fudan univ sch m...
  • 3 篇 hanyang univ div...
  • 3 篇 beijing adv inno...
  • 3 篇 univ sci & techn...
  • 3 篇 anhui univ sch i...
  • 2 篇 penn state univ ...
  • 2 篇 tsinghua univ el...
  • 2 篇 new jersey inst ...

作者

  • 15 篇 liu yongpan
  • 14 篇 yang huazhong
  • 12 篇 chang meng-fan
  • 10 篇 yue jinshan
  • 9 篇 li xueqing
  • 8 篇 zhao weisheng
  • 7 篇 tang wenjun
  • 7 篇 dou chunmeng
  • 6 篇 reis dayane
  • 6 篇 kang wang
  • 6 篇 si xin
  • 6 篇 wang linfang
  • 5 篇 yoo hoi-jun
  • 5 篇 shang dashan
  • 5 篇 kim sangjin
  • 5 篇 huang yuxuan
  • 5 篇 liu qi
  • 5 篇 zhang feng
  • 5 篇 bai jinyu
  • 5 篇 tang kea-tiong

语言

  • 178 篇 英文
  • 2 篇 其他
  • 1 篇 中文
检索条件"主题词=Computing-in-memory"
181 条 记 录,以下是61-70 订阅
排序:
A 2T P-Channel Logic Flash Cell for Reconfigurable Interconnection in Chiplet-Based computing-in-memory Accelerators
A 2T P-Channel Logic Flash Cell for Reconfigurable Interconn...
收藏 引用
IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Li, Weizeng Wang, Linfang Li, Zhi Ye, Wang Zhou, Zhidao Zhou, Haiyang Gao, Hanghang Yue, Jinshan Hu, Hongyang Liu, Fengman Luo, Qing Dou, Chunmeng Chinese Acad Sci Inst Microelect Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
In this work, we propose a two-transistor (2T) p-type channel (p-channel) logic-compatible flash cell. Compared to the previous designs, the proposed structure features reduced area-cost and enhanced ability to pass t... 详细信息
来源: 评论
DCIM-GCN: Digital computing-in-memory to Efficiently Accelerate Graph Convolutional Networks  22
DCIM-GCN: Digital Computing-in-Memory to Efficiently Acceler...
收藏 引用
IEEE/ACM 41st International Conference on Computer Aided-Design (ICCAD)
作者: Qiu, Yikan Ma, Yufei Zhao, Wentao Wu, Meng Ye, Le Huang, Ru Peking Univ Sch Integrated Circuits Beijing Peoples R China Peking Univ Inst Artificial Intelligence Beijing Peoples R China
computing-in-memory (CIM) is emerging as a promising architecture to accelerate graph convolutional networks (GCNs) normally bounded by redundant and irregular memory transactions. Current analog based CIM requires fr... 详细信息
来源: 评论
YOLoC: DeploY Large-Scale Neural Network by ROM-based computing-in-memory using ResiduaL Branch on a Chip  22
YOLoC: DeploY Large-Scale Neural Network by ROM-based Comput...
收藏 引用
59th ACM/IEEE Design Automation Conference (DAC) - From Chips to Systems - Learn Today, Create Tomorrow
作者: Chen, Yiming Yin, Guodong Tan, Zhanhong Lee, Mingyen Yang, Zekun Liu, Yongpan Yang, Huazhong Ma, Kaisheng Li, Xueqing Tsinghua Univ Elect Engn Dept BNRist ICFC Beijing Peoples R China
computing-in-memory (CiM) is a promising technique to achieve high energy efficiency in data-intensive matrix-vector multiplication (MVM) by relieving the memory bottleneck. Unfortunately, due to the limited SRAM capa... 详细信息
来源: 评论
RRAM computing-in-memory Using Transient Charge Transferring for Low-Power and Small-Latency AI Edge Inference
RRAM Computing-in-Memory Using Transient Charge Transferring...
收藏 引用
IEEE Asia Pacific Conference on Circuits and Systems (APCCAS)
作者: Wang, Linfang An, Junjie Ye, Wang Li, Weizeng Gao, Hanghang He, Yangu Gao, Jianfeng Yue, Jinshan Fan, Lingyan Dou, Chunmeng Chinese Acad Sci Inst Microelectron Beijing Peoples R China Univ Chinese Acad Sci Sch Microelectron Beijing Peoples R China Hangzhou Dianzi Univ Hangzhou Peoples R China
RRAM-based computing-in-memory (CIM) can potentially improve the energy- and area-efficiency for AI edge processors, yet may still suffer from performance degradations due to the large DC current and parasitic capacit... 详细信息
来源: 评论
Exploiting and Enhancing Computation Latency Variability for High-Performance Time-Domain computing-in-memory Neural Network Accelerators  41
Exploiting and Enhancing Computation Latency Variability for...
收藏 引用
41st IEEE International Conference on Computer Design (ICCD)
作者: Wang, Chia-Chun Lo, Yun-Chen Wu, Jun-Shen Tsai, Yu-Chih Chang, Chia-Cheng Hsu, Tsen-Wei Chu, Min-Wei Lai, Chuan-Yao Liu, Ren-Shuo Natl Tsing Hua Univ Dept Elect Engn Hsinchu Taiwan
To address the inefficiency resulting from data movement in Von Neumann architecture, computing-in-memory (CIM) is a promising solution due to its in-situ analog computation. Among the various types of CIMs, time-doma... 详细信息
来源: 评论
computing-in-memory using voltage-controlled spin-orbit torque based MRAM array
收藏 引用
MICROELECTRONICS JOURNAL 2021年 109卷 104943-104943页
作者: Shreya, Sonal Jain, Alkesh Kaushik, Brajesh Kumar Indian Inst Technol Roorkee Dept Elect & Commun Engn Roorkee 247667 Uttrakhand India
The computing-in-memory (CiM) is one of the best solutions to overcome the data transferring limitation between memory and processor. Moreover, spintronics based devices such as spin-transfer torque magnetic memory (S... 详细信息
来源: 评论
DE-C3: Dynamic Energy-Aware Compression for computing-in-memory-Based Convolutional Neural Network Acceleration  36
DE-C3: Dynamic Energy-Aware Compression for Computing-In-Mem...
收藏 引用
36th IEEE International System-on-Chip Conference (SOCC)
作者: Wu, Guan-Wei Chang, Cheng-Yang Wu, An-Yeu (Andy) Natl Taiwan Univ Dept Elect Engn Taipei Taiwan Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan
Convolutional neural networks (CNNs) are leveraged in many applications, such as image classification and natural language processing (NLP) tasks. However, the hardware implementation of CNNs not only occupies a consi... 详细信息
来源: 评论
C2IM: A Compact computing-in-memory Unit of 10 Transistors with Standard 6T SRAM  33
C<SUP>2</SUP>IM: A Compact Computing-In-Memory Unit of 10 Tr...
收藏 引用
33rd IEEE International System on Chip Conference (IEEE SOCC)
作者: Ren, Erxiang Luo, Li Liu, Zheyu Wei, Qi Qiao, Fei Beijing Jiaotong Univ Dept EE Beijing Peoples R China Tsinghua Univ Dept EE BNRist Beijing Peoples R China Tsinghua Univ Dept PI ERCNT Beijing Peoples R China
memory wall has been a major bottleneck that restrains the speed and power consumption of processors in the Von Neumann architecture. computing-in-memory (CIM) was proposed as a promising method to tackle the memory w... 详细信息
来源: 评论
H-RIS: Hybrid computing-in-memory Architecture Exploring Repetitive Input Sharing  56
H-RIS: Hybrid Computing-in-Memory Architecture Exploring Rep...
收藏 引用
56th IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Chen, Yu-Chen Chang, Cheng-Yang Wu, An-Yeu (Andy) Natl Taiwan Univ Dept Elect Engn Taipei Taiwan Natl Taiwan Univ Grad Inst Elect Engn Taipei Taiwan
computing-in-memory (CIM) has become a potential trend for accelerating convolutional neural networks (CNNs). Ongoing research, e.g., Repetitive Input Sharing (RIS), focuses on removing redundant matrix-vector multipl... 详细信息
来源: 评论
A 2.53μW/channel Event-Driven Neural Spike Sorting Processor with Sparsity-Aware computing-in-memory Macros  56
A 2.53μW/channel Event-Driven Neural Spike Sorting Processo...
收藏 引用
56th IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Jiang, Hao Zheng, Jiapei Wang, Yunzhengmao Zhang, Jinshan Zhu, Haozhe Lyu, Liangjian Chen, Yingping Chen, Chixiao Liu, Qi Fudan Univ Frontier Inst Chip & Syst State Key Lab Integrated Chips & Syst Shanghai Peoples R China East China Normal Univ Sch Commun & Elect Engn Shanghai Peoples R China
Spike sorting processors with high energy efficiency are widely used in large-scale neural signal processing tasks to monitor the activity of neurons in brains. This paper presents a low-power processor for high-accur... 详细信息
来源: 评论