咨询与建议

限定检索结果

文献类型

  • 27 篇 期刊文献
  • 12 篇 会议

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 15 篇 电气工程
    • 12 篇 仪器科学与技术
    • 8 篇 计算机科学与技术...
    • 8 篇 土木工程
    • 5 篇 材料科学与工程(可...
    • 3 篇 控制科学与工程
    • 3 篇 建筑学
    • 2 篇 机械工程
    • 2 篇 信息与通信工程
    • 2 篇 交通运输工程
    • 2 篇 航空宇航科学与技...
    • 1 篇 力学(可授工学、理...
    • 1 篇 测绘科学与技术
  • 9 篇 理学
    • 6 篇 化学
    • 6 篇 生物学
    • 2 篇 数学
    • 1 篇 物理学
  • 3 篇 医学
    • 3 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 39 篇 concrete crack d...
  • 10 篇 deep learning
  • 8 篇 structural healt...
  • 5 篇 computer vision
  • 5 篇 convolutional ne...
  • 3 篇 machine learning
  • 2 篇 semantic segment...
  • 2 篇 small unmanned a...
  • 2 篇 transfer learnin...
  • 2 篇 neural networks
  • 2 篇 computational mo...
  • 2 篇 infrastructure i...
  • 2 篇 transportation s...
  • 2 篇 feature extracti...
  • 2 篇 remote sensing
  • 2 篇 image classifica...
  • 2 篇 binary classific...
  • 2 篇 training
  • 2 篇 inspection
  • 2 篇 structural inspe...

机构

  • 2 篇 department of en...
  • 2 篇 wuhan coll sch i...
  • 1 篇 imam abdulrahman...
  • 1 篇 natl key lab wat...
  • 1 篇 hohai univ inst ...
  • 1 篇 tongling univ in...
  • 1 篇 dept. of civil a...
  • 1 篇 univ strathclyde...
  • 1 篇 univ texas san a...
  • 1 篇 kyungpook natl u...
  • 1 篇 southern illinoi...
  • 1 篇 shandong jianzhu...
  • 1 篇 univ ulsan sch c...
  • 1 篇 department of cs...
  • 1 篇 department of ci...
  • 1 篇 islamic univ col...
  • 1 篇 southwest jiaoto...
  • 1 篇 xidian univ sch ...
  • 1 篇 xidian univ sch ...
  • 1 篇 changsha univ sc...

作者

  • 2 篇 al-makhlafi moee...
  • 2 篇 alkannad abdulra...
  • 2 篇 luis daniel oter...
  • 2 篇 adrian peter
  • 2 篇 yang shuyuan
  • 2 篇 mark moyou
  • 2 篇 li jian
  • 2 篇 lin weiguo
  • 2 篇 feng zhixi
  • 1 篇 tang lei
  • 1 篇 ragulskis minvyd...
  • 1 篇 deka bhupesh
  • 1 篇 alexandre almeid...
  • 1 篇 liu hongbo
  • 1 篇 guo liulu
  • 1 篇 habib md arafat
  • 1 篇 tian hui
  • 1 篇 ma jianfei
  • 1 篇 yu mingyu
  • 1 篇 mcalorum jack

语言

  • 38 篇 英文
  • 1 篇 中文
检索条件"主题词=Concrete Crack Detection"
39 条 记 录,以下是1-10 订阅
排序:
crackVision: Effective concrete crack detection With Deep Learning and Transfer Learning
收藏 引用
IEEE ACCESS 2025年 13卷 29554-29576页
作者: Alkannad, Abdulrahman A. Al Smadi, Ahmad Yang, Shuyuan Al-Smadi, Mutasem K. Al-Makhlafi, Moeen Feng, Zhixi Yin, Zhenlong Xidian Univ Sch Artificial Intelligence Xian 710071 Shaanxi Peoples R China Zarqa Univ Dept Data Sci & Artificial Intelligence Zarqa 13100 Jordan Imam Abdulrahman Bin Faisal Univ Coll Appl Studies & Community Serv Dept Management Informat Syst Dammam 34212 Saudi Arabia Wuhan Coll Sch Informat Engn Wuhan 430212 Peoples R China
crack evaluation is critical for assessing the structural integrity of concrete, significantly impacting safety, functionality, and durability. In response to the growing demand for more advanced crack detection techn... 详细信息
来源: 评论
crackVisionX: A Fine-Tuned Framework for Efficient Binary concrete crack detection
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2025年
作者: Alkannad, Abdulrahman A. Smadi, Ahmad A. L. AL-Makhlafi, Moeen Yang, Shuyuan Feng, Zhixi Xidian Univ Sch Artificial Intelligence Key Lab Intelligent Percept & Image Understanding Xian 710071 Peoples R China Zarqa Univ Dept Data Sci & Artificial Intelligence Zarqa 13110 Jordan Wuhan Coll Sch Informat Engn Wuhan 430212 Peoples R China
cracks are critical defects in concrete structures, traditionally identified through human inspection. However, computer vision techniques, especially convolutional neural networks (CNNs), offer promising solutions fo... 详细信息
来源: 评论
SS-CCDN: A semi-supervised pixel-wise concrete crack detection network using multi-task learning and memory information
收藏 引用
MEASUREMENT 2025年 239卷
作者: Zhang, Xiaobo Tang, Haihao Yu, Chuanjin Zhai, Donghai Li, Yongle SouthWest JiaoTong Univ Sch Comp & Artificial Intelligence Chengdu 611756 Peoples R China SouthWest JiaoTong Univ Artificial Intelligence Res Inst Chengdu 611756 Peoples R China SouthWest JiaoTong Univ Natl Engn Lab Integrated Transportat Big Data Appl Chengdu 611756 Peoples R China Minist Educ Engn Res Ctr Sustainable Urban Intelligent Transpo Chengdu Peoples R China SouthWest JiaoTong Univ Sch Civil Engn Chengdu 611756 Peoples R China
concrete cracks pose significant challenges to infrastructure maintenance and safety. Traditional methods for detecting cracks suffer from inefficiency and subjectivity. Deep learning has shown promise recently, yet i... 详细信息
来源: 评论
Optimizing concrete crack detection an echo state network approach with improved fish migration optimization
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-15页
作者: Fang, Zhichun Wang, Xiuhong Gao, Jiaojiao Eskandarpour, Behrooz Tongling Univ Inst Civil & Architectural Engn Tongling 244061 Anhui Peoples R China Hebei Vocat Coll Labour Relat Dept Architecture & Civil Engn Shijiazhuang 050093 Hebei Peoples R China Tongling Univ Sch Marxism Tongling 244061 Anhui Peoples R China Islamic Azad Univ Ilam Branch Ilam Iran Islamic Univ Coll Tech Engn Najaf Iraq
There are numerous reasons for concrete buildings cracks, like stress loads, material flaws, and environmental impacts. It is important to find and investigate the concrete cracks during analyzing the safety and struc... 详细信息
来源: 评论
A performance-driven evaluation of deep learning for concrete crack detection with varying dataset sizes and training epochs: real-world implications for infrastructure monitoring
收藏 引用
Asian Journal of Civil Engineering 2025年 1-19页
作者: Bussa, Shashi Kumar Boppana, Narendra Kumar Deka, Bhupesh Department of Civil Engineering VNR VJIET Hyderabad India Department of CSE—AIML & IOT VNR VJIET Hyderabad India
Identification of concrete structural cracks at their early stages is essential for safety purposes because these early indicators lead to potential safety risks. A performance analysis of YOLOv8 object detection is p... 详细信息
来源: 评论
Dataset for training neural networks in concrete crack detection: laboratory-classified beam and column images
收藏 引用
Data in Brief 2025年 61卷
作者: Alexandre Almeida Del Savio Ana Luna Torres Daniel Cárdenas-Salas Mónica Vergara Olivera Gianella Urday Ibarra Carrera de Ingeniería Civil Instituto de Investigación Científica Universidad de Lima Lima Perú Technology Innovation Program Carleton University Ottawa Canada
The construction industry is increasingly incorporating artificial intelligence into processes for the efficiency and accuracy of structural analysis and monitoring. However, obtaining high-quality datasets to train a... 详细信息
来源: 评论
Lightweight concrete crack detection based on spiking neural networks
收藏 引用
ENGINEERING COMPUTATIONS 2024年 第10期41卷 2534-2548页
作者: Ye, Wujian Huang, Hao Zhang, Boning Liu, Yijun Lin, Ziqi Guangdong Univ Technol Sch Integrated Circuits Guangzhou Peoples R China
Purpose - Most existing methods for concrete crack detection are based on deep learning techniques such as convolutional neural networks. However, these models, due to their large memory footprint, high power consumpt... 详细信息
来源: 评论
Improving the concrete crack detection Process via a Hybrid Visual Transformer Algorithm
收藏 引用
SENSORS 2024年 第10期24卷 3247页
作者: Shahin, Mohammad Chen, F. Frank Maghanaki, Mazdak Hosseinzadeh, Ali Zand, Neda Koodiani, Hamid Khodadadi Univ Texas San Antonio Mech Engn Dept San Antonio TX 78249 USA Univ Texas San Antonio Comp Sci Dept San Antonio TX 78249 USA Univ Texas San Antonio Civil & Environm Engn Dept San Antonio TX 78249 USA
Inspections of concrete bridges across the United States represent a significant commitment of resources, given their biannual mandate for many structures. With a notable number of aging bridges, there is an imperativ... 详细信息
来源: 评论
Optimizing concrete crack detection: An Attention-Based SWIN U-Net Approach
收藏 引用
IEEE ACCESS 2024年 12卷 77575-77585页
作者: Sarhadi, Ali Ravanshadnia, Mehdi Monirabbasi, Armin Ghanbari, Milad Islamic Azad Univ Dept Civil Engn Sci & Res Branch Tehran *** Iran Payame Noor Univ Dept Civil Engn Tehran 193954697 Iran Islamic Azad Univ Dept Civil Engn East Tehran Branch Tehran *** Iran
Utilizing convolutional neural network (CNN) models, computer vision technology has become a reliable and powerful tool for detecting potential damage in concrete structures at the pixel level. In this study, an advan... 详细信息
来源: 评论
Visualization analysis of concrete crack detection in civil engineering infrastructure based on knowledge graph
收藏 引用
CASE STUDIES IN CONSTRUCTION MATERIALS 2024年 21卷
作者: Chen, Wei Hou, Jia Wang, Yanhua Yu, Mingyu Wuhan Univ Technol Sch Civil Engn & Architecture Wuhan 430070 Peoples R China Wuhan Univ Technol Sanya Sci & Educ Innovat Pk Sanya 572000 Peoples R China Cent & Southem China Municipal Engn Design & Res I Wuhan 430010 Peoples R China
Civil engineering infrastructure (such as buildings, roads, and underground tunnels) inevitably sustains varying degrees of damage over time, which can pose significant threats to both structural integrity and human s... 详细信息
来源: 评论