咨询与建议

限定检索结果

文献类型

  • 10 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 10 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 信息与通信工程
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 测绘科学与技术
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 软件工程
  • 3 篇 理学
    • 2 篇 地球物理学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 地理学
    • 1 篇 地质学
    • 1 篇 生物学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 16 篇 conditional diff...
  • 2 篇 video anomaly de...
  • 2 篇 generative model...
  • 1 篇 object detection
  • 1 篇 transformer
  • 1 篇 power systems
  • 1 篇 load profiles sy...
  • 1 篇 roads
  • 1 篇 score-based gene...
  • 1 篇 semantic image s...
  • 1 篇 semantic communi...
  • 1 篇 latent compressi...
  • 1 篇 task analysis
  • 1 篇 noise measuremen...
  • 1 篇 synthetic data g...
  • 1 篇 image segmentati...
  • 1 篇 document specula...
  • 1 篇 joint source-loa...
  • 1 篇 speech enhanceme...
  • 1 篇 load modeling

机构

  • 2 篇 univ chinese aca...
  • 1 篇 fdn bruno kessle...
  • 1 篇 beijing inst tec...
  • 1 篇 hefei univ techn...
  • 1 篇 tencent technol ...
  • 1 篇 beijing inst tec...
  • 1 篇 beijing jiaotong...
  • 1 篇 beijing inst tec...
  • 1 篇 chinese acad sci...
  • 1 篇 beijing inst tec...
  • 1 篇 fujitsu research...
  • 1 篇 hefei univ techn...
  • 1 篇 univ pisa pisa
  • 1 篇 univ tubingen tu...
  • 1 篇 department of co...
  • 1 篇 beijing inst tec...
  • 1 篇 aalborg univ dep...
  • 1 篇 beijing inst tec...
  • 1 篇 beijing univ pos...
  • 1 篇 rhein westfal th...

作者

  • 1 篇 askarov hamid
  • 1 篇 nie shijie
  • 1 篇 liu ziqi
  • 1 篇 wang dianpeng
  • 1 篇 osamura kazuki
  • 1 篇 yang pujing
  • 1 篇 li yang
  • 1 篇 ibrahimli imran
  • 1 篇 yang zongyuan
  • 1 篇 pelachaud cather...
  • 1 篇 liu baolin
  • 1 篇 bhatnagar bharat...
  • 1 篇 bogensperger lea
  • 1 篇 bahadir cagla de...
  • 1 篇 yang shanlin
  • 1 篇 hu yuanyuan
  • 1 篇 ricci elisa
  • 1 篇 pons-moll gerard
  • 1 篇 tang xiaojun
  • 1 篇 wang yanhua

语言

  • 14 篇 英文
  • 1 篇 其他
检索条件"主题词=Conditional Diffusion Models"
16 条 记 录,以下是1-10 订阅
排序:
Rate-Adaptive Generative Semantic Communication Using conditional diffusion models
收藏 引用
IEEE WIRELESS COMMUNICATIONS LETTERS 2025年 第2期14卷 539-543页
作者: Yang, Pujing Zhang, Guangyi Cai, Yunlong Zhejiang Univ Coll Informat Sci & Elect Engn Hangzhou 310027 Peoples R China Peng Cheng Lab Shenzhen 518071 Peoples R China
Recent advances in deep learning-based joint source-channel coding (DJSCC) have shown promise for end-to-end semantic image transmission. However, most existing schemes primarily focus on optimizing pixel-wise metrics... 详细信息
来源: 评论
Customized Load Profiles Synthesis for Electricity Customers Based on conditional diffusion models
收藏 引用
IEEE TRANSACTIONS ON SMART GRID 2024年 第4期15卷 4259-4270页
作者: Wang, Zhenyi Zhang, Hongcai Univ Macau State Key Lab Internet Things Smart City Macau Peoples R China Univ Macau Dept Elect & Comp Engn Macau Peoples R China
Customers' load profiles are critical resources to support data analytics applications in modern power systems. However, there are usually insufficient historical load profiles for data analysis, due to the collec... 详细信息
来源: 评论
Enhancing Rare Object Detection on Roadways Through conditional diffusion models for Data Augmentation
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第11期25卷 19018-19029页
作者: Zhang, Hancheng Hu, Yuanyuan Qian, Zhendong Sha, Jirui Xie, Min Wan, Yuyang Liu, Pengfei Southeast Univ Intelligent Transportat Syst Res Ctr Nanjing 211189 Peoples R China Southeast Univ Bridge Engn Res Ctr Nanjing 211189 Peoples R China Rhein Westfal TH Aachen Inst Highway Engn D-52074 Aachen Germany Beijing Jiaotong Univ Sch Econ & Management Beijing 100091 Peoples R China Aalborg Univ Dept Energy Technol DK-9220 Aalborg Denmark
The detection of rare objects within traffic environments is critically important for the safety and reliability of autonomous driving systems. However, the scarcity of sufficient data and the long-tail effect associa... 详细信息
来源: 评论
Unsupervised conditional diffusion models in Video Anomaly Detection for Monitoring Dust Pollution
收藏 引用
SENSORS 2024年 第5期24卷 1464页
作者: Cai, Limin Li, Mofei Wang, Dianpeng Beijing Inst Technol Sch Math & Stat Beijing 100081 Peoples R China Inner Mongolia Ecol Environm Big Data Co Ltd Hohhot 010010 Peoples R China
Video surveillance is widely used in monitoring environmental pollution, particularly harmful dust. Currently, manual video monitoring remains the predominant method for analyzing potential pollution, which is ineffic... 详细信息
来源: 评论
A novel conditional diffusion model for joint source-load scenario generation considering both diversity and controllability
收藏 引用
APPLIED ENERGY 2025年 第PartC期377卷
作者: Zhao, Wei Shao, Zhen Yang, Shanlin Lu, Xinhui Hefei Univ Technol Sch Management Hefei 230009 Peoples R China Minist Educ Key Lab Proc Optimizat & Intelligent Decis Making Hefei 230009 Peoples R China Hefei Univ Technol Philosophy & Social Sci Lab Data Sci & Smart Soc G Minist Educ Hefei 230009 Peoples R China Minist Educ Engn Res Ctr Intelligent Decis Making & Informat S Hefei 230009 Peoples R China
The intermittency of renewable energy and the volatility of multi-energy loads result in multiple joint source- load uncertainties and source-load spatio-temporal mismatch for the scenario generation of deep decarboni... 详细信息
来源: 评论
Characterizing the Features of Mitotic Figures Using a conditional diffusion Probabilistic Model  3rd
Characterizing the Features of Mitotic Figures Using a Condi...
收藏 引用
3rd Workshop on Deep Generative models for Medical Image Computing and Computer Assisted Intervention (DGM4MICCAI) at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Bahadir, Cagla Deniz Liechty, Benjamin Pisapia, David J. Sabuncu, Mert R. Cornell Univ Ithaca NY 14853 USA Cornell Tech Biomed Engn New York NY 10044 USA Weill Cornell Med Pathol & Lab Med New York NY USA Weill Cornell Med Radiol New York NY USA Cornell Tech Elect & Comp Engn New York NY USA
Mitotic figure detection in histology images is a hard-to-define, yet clinically significant task, where labels are generated with pathologist interpretations and where there is no "gold-standard" independen... 详细信息
来源: 评论
Attribute conditional diffusion-Augmented Person Re-Identification
Attribute Conditional Diffusion-Augmented Person Re-Identifi...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Nie, Shijie Shi, Ziqiang Liu, Rujie Guo, Song Zhang, Meng Wang, Mengjiao Osamura, Kazuki Septiana, Lina Narishige, Abe Fujitsu Research & Development Center China Fujitsu Limited Japan
Due to privacy and cost issues, the lack of large-scale labeled datasets limits the advancement of person re-identification. Existing methods use generative adversarial networks or game engine rendering for data augme... 详细信息
来源: 评论
Ship-Go: SAR Ship Images Inpainting via instance-to-image Generative diffusion models
收藏 引用
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING 2024年 207卷 203-217页
作者: Zhang, Xin Li, Yang Li, Feng Jiang, Hangzhi Wang, Yanhua Zhang, Liang Zheng, Le Ding, Zegang Beijing Inst Technol Sch Informat & Elect Radar Res Lab Beijing 100081 Peoples R China Beijing Inst Technol Electromagnet Sensing Res Ctr CEMEE State Key Lab Beijing 100081 Peoples R China Beijing Inst Technol Beijing Key Lab Embedded Real Time Informat Proc Beijing 100081 Peoples R China Beijing Inst Technol Chongqing Innovat Ctr Chongqing 401120 Peoples R China Beijing Inst Technol Adv Technol Res Inst Jinan 250300 Shandong Peoples R China Yangtze Delta Reg Acad Beijing Inst Technol Jiaxing 314019 Zhejiang Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China Beijing Inst Technol 5Zhongguancun South St Beijing Peoples R China
We present Ship-Go, an instance-to-image diffusion model, to increase the scale and diversity of the SAR detection datasets. Ship-Go is developed as a multi-conditions denoising diffusion probabilistic model (DDPM), i... 详细信息
来源: 评论
TF-DiffuSE: Time-Frequency Prior-Conditioned diffusion Model for Speech Enhancement  14
TF-DiffuSE: Time-Frequency Prior-Conditioned Diffusion Model...
收藏 引用
14th International Symposium on Chinese Spoken Language Processing
作者: Ding, Wenjun Wang, Xinsheng Gao, Lijian Mao, Qirong Jiangsu Univ Sch Comp Sci & Commun Engn Zhenjiang Jiangsu Peoples R China
The exceptional generative capabilities of conditional diffusion probabilistic models have demonstrated significant advantages in speech enhancement (SE). However, the introduction of Gaussian noise during the data-to... 详细信息
来源: 评论
diffusion models for virtual agent facial expression generation in Motivational interviewing  24
Diffusion models for virtual agent facial expression generat...
收藏 引用
17th International Conference on Advanced Visual Interfaces (AVI)
作者: Younsi, Nezih Pelachaud, Catherine Chaby, Laurence Sorbonne Univ ISIR Paris France Sorbonne Univ CNRS ISIR Paris France ISIR Paris Cite Paris France
Motivational interviewing (MI) is a client-centered counseling style that addresses (the client) user's motivation for behavior change. In this paper, we present a behavior generation model for Socially Interactiv... 详细信息
来源: 评论