咨询与建议

限定检索结果

文献类型

  • 205 篇 期刊文献
  • 74 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 281 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 261 篇 工学
    • 129 篇 计算机科学与技术...
    • 86 篇 电气工程
    • 39 篇 信息与通信工程
    • 27 篇 控制科学与工程
    • 22 篇 软件工程
    • 21 篇 仪器科学与技术
    • 19 篇 机械工程
    • 19 篇 生物医学工程(可授...
    • 16 篇 土木工程
    • 15 篇 石油与天然气工程
    • 14 篇 建筑学
    • 14 篇 测绘科学与技术
    • 12 篇 材料科学与工程(可...
    • 10 篇 动力工程及工程热...
    • 10 篇 环境科学与工程(可...
    • 7 篇 电子科学与技术(可...
    • 6 篇 光学工程
    • 5 篇 化学工程与技术
    • 4 篇 交通运输工程
    • 3 篇 核科学与技术
  • 61 篇 理学
    • 25 篇 物理学
    • 16 篇 地球物理学
    • 15 篇 生物学
    • 8 篇 化学
    • 5 篇 数学
  • 54 篇 医学
    • 27 篇 临床医学
    • 23 篇 特种医学
    • 17 篇 基础医学(可授医学...
  • 20 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 5 篇 农学
    • 4 篇 作物学
  • 2 篇 法学
  • 2 篇 艺术学
  • 1 篇 文学

主题

  • 281 篇 conditional gene...
  • 54 篇 deep learning
  • 21 篇 convolutional ne...
  • 14 篇 data augmentatio...
  • 13 篇 generative adver...
  • 12 篇 machine learning
  • 11 篇 generators
  • 9 篇 artificial intel...
  • 8 篇 generative adver...
  • 8 篇 training
  • 7 篇 feature extracti...
  • 7 篇 (cgan)
  • 6 篇 channel estimati...
  • 5 篇 fault diagnosis
  • 5 篇 image synthesis
  • 5 篇 computer-aided d...
  • 5 篇 deep neural netw...
  • 5 篇 learning (artifi...
  • 5 篇 convolutional ne...
  • 4 篇 lesions

机构

  • 4 篇 univ pittsburgh ...
  • 3 篇 univ chinese aca...
  • 3 篇 univ chinese aca...
  • 3 篇 shanghai jiao to...
  • 3 篇 carnegie mellon ...
  • 3 篇 shanghai jiao to...
  • 2 篇 school of artifi...
  • 2 篇 shanghai jiao to...
  • 2 篇 shanghai jiao to...
  • 2 篇 china univ min &...
  • 2 篇 emory univ dept ...
  • 2 篇 jinan univ shenz...
  • 2 篇 shenzhen univ sc...
  • 2 篇 southeast univ s...
  • 2 篇 chinese acad sci...
  • 2 篇 tsinghua univ de...
  • 2 篇 nanjing univ sta...
  • 2 篇 soochow univ sch...
  • 2 篇 tongji univ shan...
  • 2 篇 basque res & tec...

作者

  • 5 篇 nishikawa robert...
  • 5 篇 lee juhun
  • 3 篇 zhao yong
  • 3 篇 pan wei
  • 3 篇 lin qingyuan
  • 3 篇 liu yuming
  • 2 篇 rashwan hatem a.
  • 2 篇 higgins kristin
  • 2 篇 dhaka vijaypal s...
  • 2 篇 ren yu
  • 2 篇 he jun
  • 2 篇 liu sheng
  • 2 篇 song huihui
  • 2 篇 yang xiaofeng
  • 2 篇 jing zhou
  • 2 篇 zhang shaochong
  • 2 篇 akram farhan
  • 2 篇 zhao xuefeng
  • 2 篇 rani geeta
  • 2 篇 li shengyuan

语言

  • 264 篇 英文
  • 13 篇 其他
  • 2 篇 中文
  • 1 篇 荷兰文
检索条件"主题词=Conditional Generative Adversarial Network"
281 条 记 录,以下是1-10 订阅
排序:
conditional generative adversarial network (cGAN) for generating building load profiles with photovoltaics and electric vehicles
收藏 引用
ENERGY AND BUILDINGS 2025年 335卷
作者: Li, Yuewei Dong, Bing Qiu, Yueming Syracuse Univ Dept Mech & Aerosp Engn 263 Link Hall Syracuse NY 13244 USA Univ Maryland Sch Publ Policy College Pk MD 20742 USA
Building load profiles are essential in research on building energy management, efficiency, demand response, and grid planning. With the growing adoption of solar photovoltaics (PV) and electric vehicles (EVs), integr... 详细信息
来源: 评论
conditional generative adversarial network Enabled Localized Stress Recovery of Periodic Composites
收藏 引用
Computer Modeling in Engineering & Sciences 2024年 第7期140卷 957-974页
作者: Chengkan Xu Xiaofei Wang Yixuan Li Guannan Wang He Zhang Transportation and Municipal Engineering Institute Powerchina Huadong Engineering CorporationHangzhou310014China College of Civil Engineering and Architecture Zhejiang UniversityHangzhou310058China Anhui Transport Consulting&Design Institute Co. Ltd.Hefei230088China Center for Balance Architecture Zhejiang UniversityHangzhou310058China
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration ***,evaluating the magnitude and location of localized stress distributions within microstructures under ... 详细信息
来源: 评论
conditional generative adversarial network based multi-task learning framework for breast lesion segmentation of ultrasound images
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2024年 第1期33卷 013048-013048页
作者: Datta, Satyajeet Haque, Mohammad Ariful Bangladesh Univ Engn & Technol Dept Elect & Elect Engn Dhaka Bangladesh
The conditional generative adversarial network (cGAN) is widely used in image-to-image translation for natural images by implementing supervised learning loss in the GAN framework. It has also been extended to biomedi... 详细信息
来源: 评论
conditional generative adversarial network-based predictive method for crack initiation in a dual-phase austenite stainless weld
收藏 引用
CORROSION SCIENCE 2024年 240卷
作者: Wu, Yule Wang, Jiamei Guo, Xianglong Zhang, Lefu Shanghai Jiao Tong Univ Sch Nucl Sci & Engn Shanghai 200240 Peoples R China
A novel integration approach of a conditional generative adversarial network (cGAN) with an improved electrochemo-mechanical (E-C-M) model was developed to calculate the localised electrochemistry and evaluate the str... 详细信息
来源: 评论
conditional generative adversarial network Model for Conversion of 2 Dimensional Radiographs Into 3 Dimensional Views
收藏 引用
IEEE ACCESS 2023年 11卷 96283-96296页
作者: Pradhan, Nitesh Dhaka, Vijaypal Singh Rani, Geeta Pradhan, Vivek Vocaturo, Eugenio Zumpano, Ester LNM Inst Informat Technol Dept Comp Sci & Engn Jaipur 302031 Rajasthan India Manipal Univ Jaipur Dept Comp & Commun Engn Jaipur 303007 India CKS Hosp Dept Orthoped Jaipur 302013 India Univ Calabria Dept Informat Modeling Elect & Syst DIMES I-87036 Arcavacata Di Rende Italy CNR CNR NANOTEC I-87036 Arcavacata Di Rende Italy
The inefficacy of 2-Dimensional techniques in visualizing all perspectives of an organ may lead to inaccurate diagnosis of a disease or deformity. This raises a need for adopting 3-Dimensional medical images. But, the... 详细信息
来源: 评论
conditional generative adversarial network for Intrusion Detection System Based on Deep Learning  16
Conditional Generative Adversarial Network for Intrusion Det...
收藏 引用
16th International Conference on Computer and Automation Engineering (ICCAE)
作者: Huang, Zhen Xiang, Yong Chinese Acad Sci Shenyang Inst Comp Technol Shenyang Peoples R China Univ Chinese Acad Sci Shenyang Peoples R China
With the development of big data and artificial intelligence, the tremendous amount of data have led to an increase in the number of cyberattacks. Convolutional neural network combined with intrusion detection system ... 详细信息
来源: 评论
conditional generative adversarial network based data augmentation for fault diagnosis of diesel engines applied with infrared thermography and deep convolutional neural network
收藏 引用
EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY 2024年 第1期26卷
作者: Wang, Rongcai Jia, Xisheng Liu, Zichang Dong, Enzhi Li, Siyu Cheng, Zhonghua Army Engn Univ PLA Shijiazhuang Campus Shijiazhuang Peoples R China
This paper tries to introduce a new intelligent method for the early fault diagnosis of diesel engines. Firstly, infrared thermography (IRT) is introduced into diesel engine condition monitoring, then infrared images ... 详细信息
来源: 评论
conditional generative adversarial network with densely-connected residual learning for single image super-resolution
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2021年 第3期80卷 4383-4397页
作者: Qiao, Jiaojiao Song, Huihui Zhang, Kaihua Zhang, Xiaolu Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Big Data Anal Technol B DAT Nanjing Peoples R China Nanjing Univ Informat Sci & Technol Jiangsu Collaborat Innovat Ctr Atmospher Environm Nanjing Peoples R China
Recently, generative adversarial network (GAN) has been widely employed in single image super-resolution (SISR), achieving favorably good perceptual effects. However, the SR outputs generated by GAN still have some fi... 详细信息
来源: 评论
Modeling and simulation of three-component ground motion intensity envelope function based on conditional generative adversarial network
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2025年 231卷
作者: Ding, Jia-Wei Lu, Da-Gang Cao, Zheng-Gang Harbin Inst Technol Key Lab Struct Dynam Behav & Control Minist Educ Harbin 150090 Peoples R China
Artificially simulated ground motions are critical to seismic analysis of engineered structures. The ground motion intensity envelope function (IEF) defines the non-stationary characteristics and controls its duration... 详细信息
来源: 评论
Style-Controlled Image Synthesis of Concrete Damages Based on Fusion of Convolutional Encoder and Attention-Enhanced conditional generative adversarial network
收藏 引用
JOURNAL OF COMPUTING IN CIVIL ENGINEERING 2024年 第6期38卷
作者: Li, Shengyuan Le, Yushan Zhao, Xuefeng China Univ Min & Technol Sch Mech & Civil Engn Xuzhou 221116 Peoples R China China Univ Min & Technol State Key Lab Geomech & Deep Underground Engn Xuzhou 221116 Peoples R China Dalian Univ Technol Sch Civil Engn Dalian 116024 Peoples R China Dalian Univ Technol State Key Lab Coastal & Offshore Dalian 116024 Peoples R China
Developing deep learning network models for computer vision applications in concrete damage detection is a challenging task due to the shortage of training images. To address this issue, this study proposes a novel st... 详细信息
来源: 评论