咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 1 篇 学位论文

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 5 篇 计算机科学与技术...
    • 2 篇 控制科学与工程
    • 1 篇 电气工程
  • 4 篇 理学
    • 4 篇 数学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 8 篇 conditional grad...
  • 4 篇 stochastic optim...
  • 3 篇 submodular maxim...
  • 3 篇 frank-wolfe algo...
  • 2 篇 convex minimizat...
  • 2 篇 linear programmi...
  • 2 篇 gradient averagi...
  • 2 篇 greedy algorithm
  • 1 篇 greedy algorithm...
  • 1 篇 control parametr...
  • 1 篇 low-rank matrix ...
  • 1 篇 approximation al...
  • 1 篇 inverse problems
  • 1 篇 sparse optimizat...
  • 1 篇 optimal design
  • 1 篇 low-rank matrix ...
  • 1 篇 nonlinear time-l...
  • 1 篇 computational sc...
  • 1 篇 online learning
  • 1 篇 extremal points

机构

  • 1 篇 princeton univ d...
  • 1 篇 univ texas austi...
  • 1 篇 univ twente dept...
  • 1 篇 department of el...
  • 1 篇 univ new s wales...
  • 1 篇 univ waterloo de...
  • 1 篇 toyota technol i...
  • 1 篇 ecole polytechni...
  • 1 篇 univ calif davis...
  • 1 篇 department of el...
  • 1 篇 humboldt univ in...
  • 1 篇 department of el...
  • 1 篇 univ penn dept e...
  • 1 篇 yale univ dept e...
  • 1 篇 tongji univ sch ...
  • 1 篇 univ witwatersra...
  • 1 篇 henan univ sci &...

作者

  • 1 篇 ge quanbo
  • 1 篇 zhang mingchuan
  • 1 篇 hassani hamed
  • 1 篇 teo kl
  • 1 篇 balasubramanian ...
  • 1 篇 garber dan
  • 1 篇 clements dj
  • 1 篇 mokhtari aryan
  • 1 篇 wu qingtao
  • 1 篇 zhou yangfan
  • 1 篇 amin karbasi
  • 1 篇 iglesias jose a.
  • 1 篇 karbasi amin
  • 1 篇 zheng ruijuan
  • 1 篇 wong kh
  • 1 篇 ghadimi saeed
  • 1 篇 hamed hassani
  • 1 篇 hazan elad
  • 1 篇 walter daniel
  • 1 篇 carioni marcello

语言

  • 8 篇 英文
检索条件"主题词=Conditional gradient methods"
8 条 记 录,以下是1-10 订阅
排序:
Stochastic conditional gradient methods: From Convex Minimization to Submodular Maximization
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-49页
作者: Mokhtari, Aryan Hassani, Hamed Karbasi, Amin Univ Texas Austin Dept Elect & Comp Engn Austin TX 78712 USA Univ Penn Dept Elect & Syst Engn Philadelphia PA 19104 USA Yale Univ Dept Elect Engn & Comp Sci New Haven CT 06520 USA
This paper considers stochastic optimization problems for a large class of objective functions, including convex and continuous submodular. Stochastic proximal gradient methods have been widely used to solve such prob... 详细信息
来源: 评论
Stochastic conditional gradient methods: from convex minimization to submodular maximization
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 4232-4280页
作者: Aryan Mokhtari Hamed Hassani Amin Karbasi Department of Electrical and Computer Engineering The University of Texas at Austin Austin TX Department of Electrical and Systems Engineering University of Pennsylvania Philadelphia PA Department of Electrical Engineering and Computer Science Yale University New Haven CT
This paper considers stochastic optimization problems for a large class of objective functions, including convex and continuous submodular. Stochastic proximal gradient methods have been widely used to solve such prob... 详细信息
来源: 评论
Extremal Points and Sparse Optimization for Generalized Kantorovich-Rubinstein Norms
收藏 引用
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS 2025年 第1期25卷 103-144页
作者: Carioni, Marcello Iglesias, Jose A. Walter, Daniel Univ Twente Dept Appl Math NL-7500AE Enschede Netherlands Humboldt Univ Inst Math D-10117 Berlin Germany
A precise characterization of the extremal points of sublevel sets of nonsmooth penalties provides both detailed information about minimizers, and optimality conditions in general classes of minimization problems invo... 详细信息
来源: 评论
Decentralized Randomized Block-Coordinate Frank-Wolfe Algorithms for Submodular Maximization Over Networks
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2022年 第8期52卷 5081-5091页
作者: Zhang, Mingchuan Zhou, Yangfan Ge, Quanbo Zheng, Ruijuan Wu, Qingtao Henan Univ Sci & Technol Sch Informat Engn Luoyang 471023 Peoples R China Tongji Univ Sch Elect & Informat Engn Shanghai 200092 Peoples R China
We consider decentralized large-scale continuous submodular constrained optimization problems over networks, where the goal is to maximize a sum of nonconvex functions with diminishing returns property. However, the c... 详细信息
来源: 评论
Zeroth-Order Nonconvex Stochastic Optimization: Handling Constraints, High Dimensionality, and Saddle Points
收藏 引用
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS 2022年 第1期22卷 35-76页
作者: Balasubramanian, Krishnakumar Ghadimi, Saeed Univ Calif Davis Dept Stat Davis CA 95616 USA Univ Waterloo Dept Management Sci Waterloo ON Canada
In this paper, we propose and analyze zeroth-order stochastic approximation algorithms for nonconvex and convex optimization, with a focus on addressing constrained optimization, high-dimensional setting, and saddle p... 详细信息
来源: 评论
A LINEARLY CONVERGENT VARIANT OF THE conditional gradient ALGORITHM UNDER STRONG CONVEXITY, WITH APPLICATIONS TO ONLINE AND STOCHASTIC OPTIMIZATION
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2016年 第3期26卷 1493-1528页
作者: Garber, Dan Hazan, Elad Toyota Technol Inst Chicago 6045 S Kenwood Ave Chicago IL 60637 USA Princeton Univ Dept Comp Sci Princeton NJ 08540 USA
Linear optimization is many times algorithmically simpler than nonlinear convex optimization. Linear optimization over matroid polytopes, matching polytopes, and path polytopes are examples of problems for which we ha... 详细信息
来源: 评论
A FEASIBLE DIRECTIONS ALGORITHM FOR TIME-LAG OPTIMAL-CONTROL PROBLEMS WITH CONTROL AND TERMINAL INEQUALITY CONSTRAINTS
收藏 引用
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS 1985年 第3期46卷 295-317页
作者: TEO, KL WONG, KH CLEMENTS, DJ UNIV WITWATERSRAND DEPT APPL MATHJOHANNESBURG 2001SOUTH AFRICA UNIV NEW S WALES SCH ELECT ENGN & COMP SCIKENSINGTONNSW 2033AUSTRALIA
A computational algorithm for a class of time-lag optimal control problems involving control and terminal inequality constraints is presented. The convergence properties of the algorithm is also investigated. To test ... 详细信息
来源: 评论
Scalable Convex Optimization methods for Semidefinite Programming
Scalable Convex Optimization Methods for Semidefinite Progra...
收藏 引用
作者: Alp YURTSEVER ECOLE POLYTECHNIQUE FEDERALE DE LAUSNNE
学位级别:博士
With the ever-growing data sizes along with the increasing complexity of the modern problem formulations, contemporary applications in science and engineering impose heavy compu- tational and storage burdens on the op... 详细信息
来源: 评论