咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献

馆藏范围

  • 4 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 理学
    • 4 篇 数学
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...

主题

  • 4 篇 cone constrained...
  • 3 篇 semidefinite pro...
  • 2 篇 dc optimization
  • 1 篇 saddle point
  • 1 篇 grassmannian
  • 1 篇 compressed modes
  • 1 篇 dca
  • 1 篇 constraint nonde...
  • 1 篇 critical points
  • 1 篇 localization pri...
  • 1 篇 aubin property
  • 1 篇 dc decomposition
  • 1 篇 second order con...
  • 1 篇 sphere packing
  • 1 篇 locally single-v...
  • 1 篇 semi-infinite pr...
  • 1 篇 augmented lagran...

机构

  • 3 篇 russian acad sci...
  • 1 篇 st petersburg st...
  • 1 篇 univ zurich inst...
  • 1 篇 humboldt univ in...

作者

  • 2 篇 dolgopolik m. v.
  • 1 篇 dolgopolik m. v
  • 1 篇 kummer bernd
  • 1 篇 klatte diethard

语言

  • 4 篇 英文
检索条件"主题词=Cone constrained optimization"
4 条 记 录,以下是1-10 订阅
排序:
Aubin property and uniqueness of solutions in cone constrained optimization
收藏 引用
MATHEMATICAL METHODS OF OPERATIONS RESEARCH 2013年 第3期77卷 291-304页
作者: Klatte, Diethard Kummer, Bernd Univ Zurich Inst Betriebswirtschaftslehre CH-8044 Zurich Switzerland Humboldt Univ Inst Math D-10099 Berlin Germany
We discuss conditions for the Aubin property of solutions to perturbed cone constrained programs, by using and refining results given in Klatte and Kummer (Nonsmooth equations in optimization. Kluwer, Dordrecht, 2002)... 详细信息
来源: 评论
Augmented Lagrangian functions for cone constrained optimization: the existence of global saddle points and exact penalty property
收藏 引用
JOURNAL OF GLOBAL optimization 2018年 第2期71卷 237-296页
作者: Dolgopolik, M. V. St Petersburg State Univ St Petersburg Russia Russian Acad Sci Inst Problems Mech Engn St Petersburg Russia
In this article we present a general theory of augmented Lagrangian functions for cone constrained optimization problems that allows one to study almost all known augmented Lagrangians for these problems within a unif... 详细信息
来源: 评论
DC semidefinite programming and cone constrained DC optimization II: local search methods
收藏 引用
COMPUTATIONAL optimization AND APPLICATIONS 2023年 第3期85卷 993-1031页
作者: Dolgopolik, M. V. Russian Acad Sci Inst Problems Mech Engn St Petersburg Russia
The second part of our study is devoted to a detailed convergence analysis of two extensions of the well-known DCA method for solving DC (Difference of Convex functions) optimization problems to the case of general co... 详细信息
来源: 评论
DC Semidefinite programming and cone constrained DC optimization I: theory
收藏 引用
COMPUTATIONAL optimization AND APPLICATIONS 2022年 第3期82卷 649-671页
作者: Dolgopolik, M., V Russian Acad Sci Inst Problems Mech Engn St Petersburg Russia
In this two-part study, we discuss possible extensions of the main ideas and methods of constrained DC optimization to the case of nonlinear semidefinite programming problems and more general nonlinear cone constraine... 详细信息
来源: 评论