咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 27 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 20 篇 理学
    • 20 篇 数学
    • 1 篇 物理学
  • 11 篇 工学
    • 7 篇 计算机科学与技术...
    • 3 篇 电气工程
    • 3 篇 控制科学与工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 27 篇 consensus-based ...
  • 13 篇 global optimizat...
  • 12 篇 mean-field limit
  • 6 篇 machine learning
  • 4 篇 derivative-free ...
  • 3 篇 asymptotic conve...
  • 3 篇 metaheuristics
  • 3 篇 stochastic kuram...
  • 3 篇 gradient-free me...
  • 2 篇 optimization
  • 2 篇 fokker-planck eq...
  • 2 篇 numerical method...
  • 2 篇 particle swarm o...
  • 2 篇 stochastic parti...
  • 2 篇 well-posedness
  • 1 篇 multi-objective ...
  • 1 篇 fokker--plank eq...
  • 1 篇 propagation of c...
  • 1 篇 polarization
  • 1 篇 high-dimensional...

机构

  • 3 篇 munich ctr machi...
  • 3 篇 seoul natl univ ...
  • 2 篇 munich data sci ...
  • 2 篇 simula res lab d...
  • 2 篇 univ ferrara dep...
  • 2 篇 seoul natl univ ...
  • 2 篇 univ ferrara dep...
  • 2 篇 tech univ munich...
  • 2 篇 univ calgary dep...
  • 1 篇 osaka univ grad ...
  • 1 篇 natl univ singap...
  • 1 篇 suzhou institute...
  • 1 篇 natl univ singap...
  • 1 篇 univ wurzburg in...
  • 1 篇 univ ferrara dep...
  • 1 篇 department of co...
  • 1 篇 school of mathem...
  • 1 篇 tech univ munich...
  • 1 篇 rhein westfal th...
  • 1 篇 tech univ munich...

作者

  • 7 篇 pareschi lorenzo
  • 6 篇 fornasier massim...
  • 6 篇 huang hui
  • 4 篇 ha seung-yeal
  • 4 篇 borghi giacomo
  • 3 篇 riedl konstantin
  • 2 篇 sunnen philippe
  • 2 篇 klock timo
  • 2 篇 qiu jinniao
  • 2 篇 herty michael
  • 2 篇 jin shi
  • 2 篇 hwang gyuyoung
  • 1 篇 josé a. carrillo
  • 1 篇 kim sungyoon
  • 1 篇 liyao lyu
  • 1 篇 zhu yuhua
  • 1 篇 sixu li
  • 1 篇 kim jeongho
  • 1 篇 xin ran
  • 1 篇 hui huang

语言

  • 25 篇 英文
  • 2 篇 其他
检索条件"主题词=Consensus-based optimization"
27 条 记 录,以下是1-10 订阅
排序:
consensus, error estimates and applications of first- and second-order consensus-based optimization algorithms
收藏 引用
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES 2025年 第2期35卷 345-401页
作者: Byeon, Junhyeok Ha, Seung-Yeal Hwang, Gyuyoung Ko, Dongnam Yoon, Jaeyoung Seoul Natl Univ Dept Stat Seoul 08826 South Korea Seoul Natl Univ Res Inst Basic Sci Seoul 08826 South Korea Seoul Natl Univ Dept Math Sci Seoul 08826 South Korea Seoul Natl Univ Res Inst Math Seoul 08826 South Korea Inst for Basic Sci Korea Pioneer Res Ctr Math & Computat Sci Biomed Math Grp Daejeon 34126 South Korea Catholic Univ Korea Dept Math Bucheon 14662 South Korea Tech Univ Munich Sch Computat Informat & Technol Dept Math Boltzmannstr 3 D-85748 Garching Germany
Swarm-intelligence has received a lot of attention in relation to the modeling of cooperative control of drones, unmanned vehicles and robots from engineering, and meta-heuristic optimizers are often used by researche... 详细信息
来源: 评论
A PDE framework of consensus-based optimization for objectives with multiple global minimizers
收藏 引用
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS 2025年 第4期50卷 493-541页
作者: Fornasier, Massimo Sun, Lukang Tech Univ Munich Sch Computat Informat & Technol Dept Math Munich Germany Munich Ctr Machine Learning Munich Germany Munich Data Sci Inst Munich Germany King Abdullah Univ Sci & Technol Thuwal Saudi Arabia KAUST AI Initiat Thuwal Saudi Arabia
consensus-based optimization (CBO) is an agent-based derivative-free method for non-smooth global optimization that has been introduced in 2017, leveraging a surprising interplay between stochastic exploration and Lap... 详细信息
来源: 评论
Polarized consensus-based dynamics for optimization and sampling
收藏 引用
MATHEMATICAL PROGRAMMING 2025年 第1-2期211卷 125-155页
作者: Bungert, Leon Roith, Tim Wacker, Philipp Univ Wurzburg Inst Math WurzburgEmil F Str 40 D-97074 Wurzburg Germany Deutsch Elektronen Synchrotron DESY Computat Imaging Helmholtz Imaging Notkestr 85 D-22607 Hamburg Germany Univ Canterbury Sch Math & Stat Sci Rd Christchurch 8140 New Zealand
In this paper we propose polarized consensus-based dynamics in order to make consensus-based optimization (CBO) and sampling (CBS) applicable for objective functions with several global minima or distributions with ma... 详细信息
来源: 评论
consensus-based optimization METHODS CONVERGE GLOBALLY\ast
收藏 引用
SIAM JOURNAL ON optimization 2024年 第3期34卷 2973-3004页
作者: Fornasier, Massimo Klock, Timo Riedl, Konstantin Tech Univ Munich Sch Computat Informat & Technol Dept Math Munich Germany Munich Ctr Machine Learning Munich Germany Simula Res Lab Dept Numer Anal & Sci Comp Oslo Norway
In this paper we study consensus-based optimization (CBO), which is a multiagent metaheuristic derivative-free optimization method that can globally minimize nonconvex nonsmooth functions and is amenable to theoretica... 详细信息
来源: 评论
consensus-based optimization on hypersurfaces: Well-posedness and mean-field limit
收藏 引用
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES 2020年 第14期30卷 2725-2751页
作者: Fornasier, Massimo Huang, Hui Pareschi, Lorenzo Sunnen, Philippe Tech Univ Munich Dept Math Boltzmannstrae 3 D-85748 Munich Germany Univ Ferrara Dept Math & Comp Sci Via Machiavelli 30 I-44121 Ferrara Italy
We introduce a new stochastic differential model for global optimization of nonconvex functions on compact hypersurfaces. The model is inspired by the stochastic Kuramoto-Vicsek system and belongs to the class of Cons... 详细信息
来源: 评论
consensus-based optimization on the Sphere: Convergence to Global Minimizers and Machine Learning
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2021年 第1期22卷 1-55页
作者: Fornasier, Massimo Huang, Hui Pareschi, Lorenzo Suennen, Philippe Tech Univ Munich Dept Math Boltzmannstr 3 D-85748 Munich Germany Univ Ferrara Dept Math & Comp Sci Via Machiavelli 30 I-44121 Ferrara Italy
We investigate the implementation of a new stochastic Kuramoto-Vicsek-type model for global optimization of nonconvex functions on the sphere. This model belongs to the class of consensus-based optimization. In fact, ... 详细信息
来源: 评论
consensus-based optimization FOR SADDLE POINT PROBLEMS
收藏 引用
SIAM JOURNAL ON CONTROL AND optimization 2024年 第2期62卷 1093-1121页
作者: Huang, Hui Qiu, Jinniao Riedl, Konstantin Karl Franzens Univ Graz Dept Math & Sci Comp A-8010 Graz Austria Univ Calgary Dept Math & Stat Calgary AB T2N 1N4 Canada Tech Univ Munich Sch Computat Informat & Technol Dept Math D-80333 Munich Germany Munich Ctr Machine Learning Munich Germany
In this paper, we propose consensus -based optimization for saddle point problems (CBO-SP), a novel multi -particle metaheuristic derivative -free optimization method capable of provably finding global Nash equilibria... 详细信息
来源: 评论
Time-discrete momentum consensus-based optimization algorithm and its application to Lyapunov function approximation
收藏 引用
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES 2024年 第6期34卷 1153-1204页
作者: Ha, Seung-Yeal Hwang, Gyuyoung Kim, Sungyoon Seoul Natl Univ Res Inst Math Dept Math Sci Seoul 08826 South Korea Seoul Natl Univ Dept Math Sci Seoul 08826 South Korea Stanford Univ Dept Elect Engn Stanford CA 94305 USA
In this paper, we study a discrete momentum consensus-based optimization (Momentum-CBO) algorithm which corresponds to a second-order generalization of the discrete first-order CBO [S.-Y. Ha, S. Jin and D. Kim, Conver... 详细信息
来源: 评论
On the mean-field limit for the consensus-based optimization
收藏 引用
MATHEMATICAL METHODS IN THE APPLIED SCIENCES 2022年 第12期45卷 7814-7831页
作者: Huang, Hui Qiu, Jinniao Univ Calgary Dept Math & Stat 2500 Univ Dr NW Calgary AB T2N 1N4 Canada
This paper is concerned with the large particle limit for the consensus-based optimization (CBO), which was postulated in the pioneering works by Carrillo, Pinnau, Totzeck and many others. In order to solve this open ... 详细信息
来源: 评论
ANISOTROPIC DIFFUSION IN consensus-based optimization ON THE SPHERE
收藏 引用
SIAM JOURNAL ON optimization 2022年 第3期32卷 1958-1986页
作者: Fornasier, Massimo Huang, Hui Pareschi, Lorenzo Sunnen, Philippe Tech Univ Munich Dept Math D-85748 Garching Germany Tech Univ Munich Munich Data Sci Inst D-85748 Garching Germany Univ Calgary Dept Math & Stat Calgary AB T2N 1N4 Canada Univ Ferrara Dept Math I-44121 Ferrara Italy Univ Ferrara Dept Comp Sci I-44121 Ferrara Italy
In this paper, we are concerned with the global minimization of a possibly non-smooth and nonconvex objective function constrained on the unit hypersphere by means of a multi-agent derivative-free method. The proposed... 详细信息
来源: 评论