We consider the problem of waveform design for Multiple-Input Multiple-Output (MIMO) radar in the presence of signal-dependent interference embedded in white Gaussian disturbance. We present two sequential optimizatio...
详细信息
We consider the problem of waveform design for Multiple-Input Multiple-Output (MIMO) radar in the presence of signal-dependent interference embedded in white Gaussian disturbance. We present two sequential optimization procedures to maximize the Signal to Interference plus Noise Ratio (SINR), accounting for a constantmodulus constraint as well as a similarity constraint involving a known radar waveform with some desired properties (e. g., in terms of pulse compression and ambiguity). The presented sequential optimization algorithms, based on a relaxation method, yield solutions with good accuracy. Their computational complexity is linear in the number of iterations and trials in the randomized procedure and polynomial in the receive filter length. Finally, we evaluate the proposed techniques, by considering their SINR performance, beam pattern as well as pulse compression property, via numerical simulations.
We consider the problem of waveform design for Multiple-Input Multiple-Output (MIMO) radar in the presence of signal-dependent interference embedded in white Gaussian disturbance. We present two sequential optimizatio...
详细信息
ISBN:
(纸本)9781479920358
We consider the problem of waveform design for Multiple-Input Multiple-Output (MIMO) radar in the presence of signal-dependent interference embedded in white Gaussian disturbance. We present two sequential optimization procedures to maximize the Signal to Interference plus Noise Ratio (SINR), accounting for a constantmodulus constraint as well as a similarity constraint involving a known radar waveform with some desired properties (e.g., in terms of pulse compression and ambiguity). The presented sequential optimization algorithms, based on a relaxation method, yield solutions with good accuracy. Their computational complexity is linear in the number of iterations and trials in the randomized procedure and polynomial in the receive filter length. Finally, we evaluate the proposed techniques, by considering their SINR performance, beam pattern as well as pulse compression property, via numerical simulations.
This paper considers the robust waveform design of multiple-input multiple-output (MIMO) radar to enhance targets detection in the presence of signal-dependent interferences assuming the knowledge of steering vectors ...
详细信息
This paper considers the robust waveform design of multiple-input multiple-output (MIMO) radar to enhance targets detection in the presence of signal-dependent interferences assuming the knowledge of steering vectors is imprecise. Specifically, resorting to semidefinite programming (SDP)-related technique, we first maximize the worst-case signal-to-interference-plus-noise ratio (SINR) over uncertain region to optimize waveform covariance matrix forcing a uniform elemental power requirement. Then, based on least square (LS) approach, we devise the waveform accounting for constant modulus and similarity constraints by the obtained waveform covariance matrix using cyclic algorithm (CA). Finally, we assess the effectiveness of the proposed technique through numerical simulations in terms of non-uniform point-like clutter and uniform clutter.
暂无评论