咨询与建议

限定检索结果

文献类型

  • 86 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 104 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 97 篇 工学
    • 90 篇 计算机科学与技术...
    • 50 篇 电气工程
    • 19 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 软件工程
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
  • 19 篇 管理学
    • 19 篇 管理科学与工程(可...
  • 15 篇 理学
    • 9 篇 数学
    • 2 篇 物理学
    • 2 篇 生物学
    • 1 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 104 篇 constrained mult...
  • 32 篇 evolutionary alg...
  • 23 篇 optimization
  • 17 篇 sociology
  • 16 篇 statistics
  • 16 篇 evolutionary com...
  • 15 篇 convergence
  • 10 篇 task analysis
  • 9 篇 constraint handl...
  • 6 篇 linear programmi...
  • 6 篇 search problems
  • 5 篇 differential evo...
  • 5 篇 pareto optimizat...
  • 4 篇 knowledge transf...
  • 4 篇 evolutionary alg...
  • 4 篇 multitasking
  • 4 篇 decomposition
  • 3 篇 multiobjective e...
  • 3 篇 constraint handl...
  • 3 篇 autonomous aeria...

机构

  • 9 篇 zhengzhou univ s...
  • 8 篇 zhongyuan univ t...
  • 5 篇 zhengzhou univ s...
  • 5 篇 henan inst techn...
  • 4 篇 zhongyuan univ t...
  • 4 篇 cent south univ ...
  • 4 篇 tsinghua univ de...
  • 4 篇 qatar univ coll ...
  • 3 篇 cent south univ ...
  • 3 篇 china univ geosc...
  • 3 篇 shenzhen univ co...
  • 2 篇 chongqing univ s...
  • 2 篇 hong kong polyte...
  • 2 篇 south china univ...
  • 2 篇 hangzhou hualan ...
  • 2 篇 sun yat sen univ...
  • 2 篇 hangzhou dianzi ...
  • 2 篇 southern univ sc...
  • 2 篇 osaka prefecture...
  • 2 篇 sun yat sen univ...

作者

  • 14 篇 yu kunjie
  • 14 篇 liang jing
  • 12 篇 qiao kangjia
  • 12 篇 qu boyang
  • 9 篇 yue caitong
  • 5 篇 filipic bogdan
  • 5 篇 zhou jinlong
  • 4 篇 peng chaoda
  • 4 篇 yu fan
  • 4 篇 wang ling
  • 4 篇 ma zhongwei
  • 3 篇 zou juan
  • 3 篇 tusar tea
  • 3 篇 chen qun
  • 3 篇 ban xuanxuan
  • 3 篇 tan kay chen
  • 3 篇 vodopija aljosa
  • 3 篇 wang jiahai
  • 3 篇 yen gary g.
  • 3 篇 wang yong

语言

  • 104 篇 英文
检索条件"主题词=Constrained Multiobjective Optimization"
104 条 记 录,以下是31-40 订阅
排序:
Balancing Constraints and Objectives by Considering Problem Types in constrained multiobjective optimization
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2023年 第1期53卷 88-101页
作者: Xiang, Yi Yang, Xiaowei Huang, Han Wang, Jiahai South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China South China Univ Technol Sch Software Engn Minist Educ Guangzhou 510006 Peoples R China South China Univ Technol Minist Educ Key Lab Big Data & Intelligent Robot Guangzhou 510006 Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510275 Peoples R China
constrained multiobjective optimization problems widely exist in real-world applications. To handle them, the balance between constraints and objectives is crucial, but remains challenging due to non-negligible impact... 详细信息
来源: 评论
AN INFEASIBLE ELITIST BASED PARTICLE SWARM optimization FOR constrained multiobjective optimization AND ITS CONVERGENCE
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2010年 第3期24卷 381-400页
作者: Wei, Jingxuan Wang, Yuping Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China
In this paper, an infeasible elitist based particle swarm optimization is proposed for solving constrained optimization problems. Firstly, an infeasible elitist preservation strategy is proposed, which keeps some infe... 详细信息
来源: 评论
An Instance Space Analysis of constrained multiobjective optimization Problems
收藏 引用
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2023年 第5期27卷 1427-1439页
作者: Alsouly, Hanan Kirley, Michael Munoz, Mario Andres Univ Melbourne Sch Comp & Informat Melbourne Vic 3010 Australia ARC Ctr Optimisat Technol Integrated Methodol & A Melbourne Vic 3010 Australia Imam Mohammad Ibn Saud Islamic Univ Coll Comp & Informat Sci Riyadh 11564 Saudi Arabia
constrained multiobjective optimization problems (CMOPs) are generally more challenging than unconstrained problems. This in part can be attributed to the infeasible region generated by the constraint functions, the i... 详细信息
来源: 评论
A METHOD FOR constrained multiobjective optimization BASED ON SQP TECHNIQUES
收藏 引用
SIAM JOURNAL ON optimization 2016年 第4期26卷 2091-2119页
作者: Fliege, Jorg Vaz, A. Ismael F. Univ Southampton Sch Math Southampton SO17 1BJ Hants England Univ Minho ALGORITMI Res Ctr Campus Gualtar P-4710057 Braga Portugal
We propose a method for constrained and unconstrained nonlinear multiobjective optimization problems that is based on an SQP-type approach. The proposed algorithm maintains a list of nondominated points that is improv... 详细信息
来源: 评论
Separations and Optimality of constrained multiobjective optimization via Improvement Sets
收藏 引用
JOURNAL OF optimization THEORY AND APPLICATIONS 2018年 第3期178卷 794-823页
作者: Chen, Jiawei Huang, La Li, Shengjie Southwest Univ Sch Math & Stat Chongqing 400715 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400044 Peoples R China Chongqing Univ Coll Math & Stat Chongqing 401331 Peoples R China
In this paper, we investigate the separations and optimality conditions for the optimal solution defined by the improvement set of a constrained multiobjective optimization problem. We introduce a vector-valued regula... 详细信息
来源: 评论
A novel tri-stage with reward-switching mechanism for constrained multiobjective optimization problems
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2024年 第3期10卷 4625-4655页
作者: Qu, Jiqing Li, Xuefeng Xiao, Hui Tongji Univ Coll Elect & Informat Engn 4800 Caoan Highway Shanghai 201804 Peoples R China Tongji Univ Frontiers Sci Ctr Intelligent Autonomous Syst 55 Hechuan Rd Shanghai 201804 Peoples R China
The effective exploitation of infeasible solutions plays a crucial role in addressing constrained multiobjective optimization problems (CMOPs). However, existing constrained multiobjective optimization evolutionary al... 详细信息
来源: 评论
A two-stage bidirectional coevolution algorithm with reverse search for constrained multiobjective optimization
收藏 引用
COMPLEX & INTELLIGENT SYSTEMS 2024年 第4期10卷 4973-4988页
作者: Liu, Cancan Wang, Yujia Xue, Yunfeng Shanghai Univ Engn Sci Sch Elect & Elect Engn Shanghai 201620 Peoples R China Shanghai Aerosp Elect Technol Inst Shanghai 201108 Peoples R China
constrained multiobjective optimization problems (CMOPs) are widespread in reality. The presence of constraints complicates the feasible region of the original problem and increases the difficulty of problem solving. ... 详细信息
来源: 评论
A Hybrid Constraint Handling Mechanism with Differential Evolution for constrained multiobjective optimization
A Hybrid Constraint Handling Mechanism with Differential Evo...
收藏 引用
IEEE Congress on Evolutionary Computation (CEC)
作者: Hsieh, Min-Nan Chiang, Tsung-Che Fu, Li-Chen Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei Taiwan Natl Taiwan Univ Dept Elect Engn & Dept Comp Sci & Informat Engn Taipei Taiwan
In real-world applications, the optimization problems usually include some conflicting objectives and subject to many constraints. Much research has been done in the fields of multiobjective optimization and constrain... 详细信息
来源: 评论
Large Language Model-Aided Evolutionary Search for constrained multiobjective optimization  20th
Large Language Model-Aided Evolutionary Search for Constrain...
收藏 引用
20th International Conference on Intelligent Computing (ICIC)
作者: Wang, Zeyi Liu, Songbai Chen, Jianyong Tan, Kay Chen Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Peoples R China Hong Kong Polytech Univ Dept Comp Hung Hom Hong Kong Peoples R China
Evolutionary algorithms excel in solving complex optimization problems, especially those with multiple objectives. However, their stochastic nature can sometimes hinder rapid convergence to the global optima, particul... 详细信息
来源: 评论
Threshold Based Dynamic and Adaptive Penalty Functions for constrained multiobjective optimization  1
Threshold Based Dynamic and Adaptive Penalty Functions for C...
收藏 引用
1st International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)
作者: Jan, Muhammad Asif Tairan, Nasser Khanum, Rashida Adeeb Kohat Univ Sci & Technol Dept Math Kohat Pakistan King Khalid Univ Coll Comp Sci Abha Saudi Arabia Univ Peshawar Jinnah Coll Women Peshawar Pakistan
Penalty functions are frequently used for dealing with constraints in constrained optimization. Among different types of penalty functions, dynamic and adaptive penalty functions seem effective, since the penalty coef... 详细信息
来源: 评论