咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 软件工程
  • 1 篇 理学
    • 1 篇 数学

主题

  • 2 篇 constrained conv...
  • 1 篇 correlation-awar...
  • 1 篇 time-series pred...
  • 1 篇 accelerated proj...
  • 1 篇 fast convergence...
  • 1 篇 polyak-lojasiewi...
  • 1 篇 nonlinear functi...
  • 1 篇 non-separable fu...
  • 1 篇 gradient descent
  • 1 篇 networks
  • 1 篇 takagi-sugeno-ka...

机构

  • 1 篇 amirkabir univ t...
  • 1 篇 college of mathe...
  • 1 篇 college of mathe...
  • 1 篇 shahid beheshti ...

作者

  • 1 篇 zhang huiyan
  • 1 篇 ebadzadeh mohamm...
  • 1 篇 salimi-badr armi...
  • 1 篇 han xin
  • 1 篇 zhang junrong

语言

  • 2 篇 英文
检索条件"主题词=Constrained convex optimization problem"
2 条 记 录,以下是1-10 订阅
排序:
A Novel Accelerated Projection Neurodynamic Model for convex optimization problem constrained by Set and Linear-Equality  6
A Novel Accelerated Projection Neurodynamic Model for Convex...
收藏 引用
6th International Conference on Electronic Engineering and Informatics, EEI 2024
作者: Zhang, Huiyan Zhang, Junrong Han, Xin College of Mathematics and Statistics Southwest University Chongqing400715 China College of Mathematics Sichuan University of Arts and Science Sichuan Dazhou635000 China
Accelerated neurodynamic models are important tools for efficiently addressing optimization problems. By making use of projection operators, this paper proposes a novel acceler-ated projection neurodynamic model (APNM... 详细信息
来源: 评论
A novel learning algorithm based on computing the rules' desired outputs of a TSK fuzzy neural network with non-separable fuzzy rules
收藏 引用
NEUROCOMPUTING 2022年 第0期470卷 139-153页
作者: Salimi-Badr, Armin Ebadzadeh, Mohammad Mehdi Shahid Beheshti Univ Fac Comp Sci & Engn Tehran Iran Amirkabir Univ Technol Dept Comp Engn Tehran Iran
In this paper, a novel learning approach to train fuzzy neural networks' parameters based on calculating the desired outputs of their rules, is proposed. We describe the desired outputs of fuzzy rules as values th... 详细信息
来源: 评论