咨询与建议

限定检索结果

文献类型

  • 123 篇 期刊文献
  • 42 篇 会议

馆藏范围

  • 165 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 160 篇 工学
    • 131 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 22 篇 控制科学与工程
    • 16 篇 软件工程
    • 9 篇 信息与通信工程
    • 6 篇 动力工程及工程热...
    • 5 篇 机械工程
    • 5 篇 土木工程
    • 4 篇 交通运输工程
    • 3 篇 化学工程与技术
    • 3 篇 石油与天然气工程
    • 2 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 网络空间安全
  • 44 篇 管理学
    • 44 篇 管理科学与工程(可...
  • 13 篇 理学
    • 7 篇 数学
    • 3 篇 化学
    • 3 篇 生物学
    • 1 篇 物理学
    • 1 篇 海洋科学
    • 1 篇 系统科学
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 165 篇 constrained mult...
  • 47 篇 evolutionary alg...
  • 9 篇 evolutionary alg...
  • 8 篇 constraint handl...
  • 7 篇 differential evo...
  • 6 篇 convergence
  • 6 篇 optimization
  • 5 篇 constraint handl...
  • 5 篇 knowledge transf...
  • 5 篇 two-stage
  • 5 篇 two-stage framew...
  • 5 篇 decomposition
  • 4 篇 co-evolution
  • 4 篇 constraint-handl...
  • 4 篇 dual-population
  • 4 篇 constraint handl...
  • 4 篇 evolutionary com...
  • 3 篇 competitive swar...
  • 3 篇 multi-objective ...
  • 3 篇 task analysis

机构

  • 10 篇 china univ geosc...
  • 6 篇 northeastern uni...
  • 5 篇 xiamen univ tech...
  • 5 篇 tsinghua univ de...
  • 4 篇 china univ min &...
  • 4 篇 de montfort univ...
  • 3 篇 ningbo univ fac ...
  • 3 篇 lanzhou univ tec...
  • 3 篇 northeastern uni...
  • 3 篇 northeastern uni...
  • 3 篇 shantou univ dep...
  • 3 篇 nanjing univ aer...
  • 3 篇 china univ min &...
  • 3 篇 south china agr ...
  • 3 篇 guangdong univ t...
  • 2 篇 guangdong univ t...
  • 2 篇 guangdong univ t...
  • 2 篇 lanzhou univ tec...
  • 2 篇 wuhan univ sch c...
  • 2 篇 mit dept mech en...

作者

  • 9 篇 yang yongkuan
  • 8 篇 gong wenyin
  • 8 篇 liu jianchang
  • 8 篇 ming fei
  • 7 篇 zou juan
  • 7 篇 tan shubin
  • 6 篇 yang shengxiang
  • 6 篇 li wenji
  • 6 篇 fan zhun
  • 6 篇 zheng jinhua
  • 5 篇 gong dunwei
  • 5 篇 peng chaoda
  • 5 篇 wang ling
  • 4 篇 zhang jianlin
  • 4 篇 chen zuohan
  • 4 篇 wang honghai
  • 4 篇 cao jie
  • 4 篇 zhang wei
  • 3 篇 liu yuanchao
  • 3 篇 wang yan

语言

  • 161 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=Constrained multi-objective optimization"
165 条 记 录,以下是1-10 订阅
排序:
constrained multi-objective optimization assisted by convergence and diversity auxiliary tasks
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 139卷
作者: Dang, Qianlong Shang, Wutao Huang, Zhengxin Yang, Shuai Northwest A&F Univ Coll Sci Yangling 712100 Peoples R China Northwest A&F Univ Joint Lab Algorithm & Simulat Low Altitude Aircraf Yangling 712100 Peoples R China Youjiang Med Univ Nationalities Dept Math & Comp Sci Baise 533000 Peoples R China Anhui Agr Univ Sch Informat & Artificial Intelligence Hefei 230036 Peoples R China
In the field of constrained multi-objective optimization, constructing auxiliary tasks can guide the algorithm to achieve efficient search. Different forms of auxiliary tasks have their own advantages, and a reasonabl... 详细信息
来源: 评论
Optimizing Police Patrol Strategies in Real-World Scenarios: A Modified PPS-MOEA/D Approach for constrained multi-objective optimization
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第7期15卷 3651-3651页
作者: Sui, Jinguang Chen, Peng Jiang, Huan Peoples Publ Secur Univ China Sch Informat Network Secur Beijing 100038 Peoples R China Peoples Publ Secur Univ China Sch Criminol Beijing 100038 Peoples R China Beijing Technol & Business Univ Sch Comp & Artificial Intelligence Beijing 100048 Peoples R China
This study addresses the realistic constrained multi-objective optimization problem of police patrols by constructing a mathematical model tailored to the actual operational context of police patrols in China. To solv... 详细信息
来源: 评论
constrained multi-objective optimization via neural network and cooperative populations
收藏 引用
APPLIED SOFT COMPUTING 2025年 176卷
作者: Cao, Jie Wang, Yiyuan Zhang, Jianlin Chen, Zuohan Lanzhou Univ Technol Sch Comp & Commun LanGongPing 287 Lanzhou 730050 Gansu Peoples R China Lanzhou Univ Technol Gansu Engn Res Ctr Mfg Informat LanGongPing 287 Lanzhou 730050 Gansu Peoples R China Lanzhou City Univ Sch Informat Engn JieFang 11 Lanzhou 730050 Gansu Peoples R China
constrained multi-objective optimization problems are widely used in practical scenarios such as intelligent manufacturing and network communication. These problems are often made intractable by constraints, and achie... 详细信息
来源: 评论
A Constraint Priority Decision framework for constrained multi-objective optimization with complex feasible regions
收藏 引用
APPLIED SOFT COMPUTING 2025年 172卷
作者: Yan, Pengguo Tian, Ye Wang, Jiesheng Liu, Yu Univ Sci & Technol Liaoning Sch Elect & Informat Engn Anshan 114051 Peoples R China Anhui Univ Sch Comp Sci & Technol Hefei 230601 Peoples R China
constrained multi-objective optimization problems (CMOPs) present significant challenges due to the simultaneous consideration of objectives and constraints, which becomes particularly arduous when the feasible region... 详细信息
来源: 评论
Growing neural gas network based environment selection strategy for constrained multi-objective optimization
收藏 引用
INFORMATION SCIENCES 2025年 698卷
作者: Bai, Weiting Dang, Qianlong Wu, Jingxiang Gao, Xiaochuan Zhang, Guanghui Northwest A&F Univ Coll Sci Yangling 712100 Peoples R China Northwest A&F Univ Joint Lab Algorithm & Simulat Low Altitude Aircraf Yangling 712100 Peoples R China Hebei Agr Univ Sch Informat Sci & Technol Baoding 071001 Peoples R China
When solving constrained multi-objective problems, it is necessary to consider the satisfaction of constraints and the optimization of objective functions at the same time. However, emphasizing constraints may lead to... 详细信息
来源: 评论
constrained multi-objective optimization With Constraint Priority
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2025年
作者: Zhou, Xinyu Zhu, Yanjun Wang, Yizhi Sun, Ruiqing Zou, Juan Jiangxi Normal Univ Sch Comp & Informat Engn Nanchang 330022 Peoples R China Ganzhou Open Univ Ganzhou 341000 Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China Xiangtan Univ Key Lab Intelligent Comp & Informat Proc Minist Educ China Xiangtan 411105 Peoples R China
constrained multi-objective problems (CMOPs) are tricky, because it is difficult to handle multiple objectives and constraints simultaneously. Most existing algorithms perform well on CMOPs with a single constraint or... 详细信息
来源: 评论
Two-stage bidirectional coevolutionary algorithm for constrained multi-objective optimization
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 92卷
作者: Zhao, Shulin Hao, Xingxing Chen, Li Yu, Tingfeng Li, Xingyu Liu, Wei Northwest Univ Sch Informat Sci & Technol Xian 710127 Peoples R China Leiden Univ Leiden Inst Adv Comp Sci NL-2333 CA Leiden Netherlands
objective optimization and constraint satisfaction are two primary and conflicting tasks in solving constrained multi-objective optimization problems (CMOPs). To better trade off them, this paper proposes a two-stage ... 详细信息
来源: 评论
A knowledge driven two-stage co-evolutionary algorithm for constrained multi-objective optimization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 274卷
作者: Zhang, Wei Liu, Jianchang Li, Lin Liu, Yuanchao Wang, Honghai Northeastern Univ Natl Frontiers Sci Ctr Ind Intelligent & Syst Opti Shenyang Peoples R China Northeastern Univ Coll Informat Sci & Engn Shenyang Peoples R China
In recent years, constrained multi-objective optimization problems (CMOPs) have received wide attention. However, most solving methods for CMOPs still cannot balance objectives and constraints well since constraints m... 详细信息
来源: 评论
A constrained multi-objective optimization algorithm with adaptive dual-stage search strategy utilizing the relationship between different Pareto fronts
收藏 引用
SWARM AND EVOLUTIONARY COMPUTATION 2025年 95卷
作者: Su, Kai He, Zhihui Wang, Feng Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
multi-stage dual-population constrained evolutionary algorithms (MDCMOEAs) demonstrate competitive performance in solving constrained multi-objective optimization problems (CMOPs). In these algorithms, the main popula... 详细信息
来源: 评论
constrained multi-objective optimization With Deep Reinforcement Learning Assisted Operator Selection
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2024年 第4期11卷 919-931页
作者: Fei Ming Wenyin Gong Ling Wang Yaochu Jin the School of Computer Science China University of GeosciencesWuhan 430074China the Department of Automation Tsinghua UniversityBeijing 100084China the Faculty of Technology Bielefeld UniversityNorth Rhine-Westphalia33619 BielefeldGermany
Solving constrained multi-objective optimization problems with evolutionary algorithms has attracted considerable *** constrained multi-objective optimization evolutionary algorithms(CMOEAs)have been developed with th... 详细信息
来源: 评论