咨询与建议

限定检索结果

文献类型

  • 880 篇 期刊文献
  • 873 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 1,773 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,587 篇 工学
    • 1,183 篇 计算机科学与技术...
    • 634 篇 电气工程
    • 323 篇 软件工程
    • 140 篇 信息与通信工程
    • 96 篇 生物医学工程(可授...
    • 91 篇 控制科学与工程
    • 90 篇 机械工程
    • 89 篇 电子科学与技术(可...
    • 51 篇 仪器科学与技术
    • 31 篇 测绘科学与技术
    • 25 篇 材料科学与工程(可...
    • 12 篇 环境科学与工程(可...
    • 10 篇 土木工程
    • 8 篇 网络空间安全
  • 400 篇 医学
    • 251 篇 临床医学
    • 119 篇 特种医学
    • 81 篇 基础医学(可授医学...
    • 12 篇 中西医结合
    • 7 篇 医学技术(可授医学...
  • 257 篇 理学
    • 137 篇 物理学
    • 39 篇 生物学
    • 33 篇 数学
    • 22 篇 地球物理学
    • 22 篇 系统科学
    • 12 篇 化学
  • 116 篇 管理学
    • 80 篇 管理科学与工程(可...
    • 22 篇 图书情报与档案管...
    • 15 篇 公共管理
  • 15 篇 艺术学
    • 12 篇 美术学
  • 14 篇 农学
  • 8 篇 法学
    • 7 篇 社会学
  • 7 篇 教育学
  • 4 篇 文学
  • 3 篇 经济学
  • 2 篇 历史学

主题

  • 1,773 篇 content-based im...
  • 168 篇 relevance feedba...
  • 127 篇 image retrieval
  • 105 篇 feature extracti...
  • 66 篇 ecosystem-based ...
  • 66 篇 art therapy
  • 56 篇 deep learning
  • 44 篇 image classifica...
  • 43 篇 images
  • 42 篇 cbir
  • 32 篇 computer-aided d...
  • 32 篇 semantic gap
  • 31 篇 image segmentati...
  • 31 篇 information retr...
  • 30 篇 clustering
  • 29 篇 image database
  • 29 篇 feature selectio...
  • 28 篇 classification
  • 27 篇 texture
  • 26 篇 image databases

机构

  • 13 篇 nanyang technol ...
  • 10 篇 univ loughboroug...
  • 9 篇 microsoft res as...
  • 9 篇 liaoning normal ...
  • 8 篇 czestochowa tech...
  • 7 篇 univ allahabad d...
  • 6 篇 univ michigan de...
  • 6 篇 aston univ sch e...
  • 6 篇 indian inst tech...
  • 6 篇 singapore manage...
  • 6 篇 michigan state u...
  • 6 篇 kyungpook natl u...
  • 5 篇 univ sydney sydn...
  • 5 篇 utah state univ ...
  • 5 篇 univ engn & tech...
  • 5 篇 sao paulo state ...
  • 5 篇 kyungpook natl u...
  • 5 篇 islamic azad uni...
  • 4 篇 mansoura univ de...
  • 4 篇 univ sydney sch ...

作者

  • 27 篇 guimaraes pedron...
  • 24 篇 torres ricardo d...
  • 21 篇 thoma george r.
  • 21 篇 antani sameer
  • 16 篇 schaefer gerald
  • 14 篇 mueller henning
  • 12 篇 valem lucas pasc...
  • 11 篇 demner-fushman d...
  • 11 篇 long l. rodney
  • 10 篇 scherer rafal
  • 10 篇 hoi steven c. h.
  • 9 篇 yang hong-ying
  • 9 篇 mukhopadhyay sud...
  • 9 篇 wang xiang-yang
  • 8 篇 korytkowski marc...
  • 8 篇 zhang ad
  • 8 篇 long lr
  • 8 篇 edmundson david
  • 7 篇 srivastava prash...
  • 7 篇 zhu jianke

语言

  • 1,718 篇 英文
  • 32 篇 其他
  • 17 篇 中文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 土耳其文
检索条件"主题词=Content-based Image Retrieval"
1773 条 记 录,以下是1-10 订阅
排序:
content-based image retrieval through fusion of deep features extracted from segmented neutrosophic using depth map
收藏 引用
VISUAL COMPUTER 2024年 第10期40卷 6867-6881页
作者: Taheri, Fatemeh Rahbar, Kambiz Beheshtifard, Ziaeddin Islamic Azad Univ Dept Comp Engn South Tehran Branch Tehran Iran
The main challenge of content-based image retrieval systems is the difference between how images are described using algorithms and how humans understand the semantic concepts of an image. To overcome this challenge, ... 详细信息
来源: 评论
content-based image retrieval for Multi-Class Volumetric Radiology images: A Benchmark Study
收藏 引用
IEEE ACCESS 2025年 13卷 68066-68083页
作者: Jush, Farnaz Khun Vogler, Steffen Truong, Tuan Lenga, Matthias Bayer AG Radiol Dept D-13353 Berlin Germany
With the growing number of images generated daily in radiological practices and the digitization of historical studies, we face large databases where metadata can be incomplete or incorrect. content-based image retrie... 详细信息
来源: 评论
content-based image retrieval Using Composite Feature Vectors with Edge Features based on Color and Pixel Similarity
收藏 引用
TRAITEMENT DU SIGNAL 2024年 第4期41卷 1945-1952页
作者: Orman, Abdullah Ankara Yildirim Beyazit Univ Dept Comp Engn TR-06010 Ankara Turkiye
content-based image retrieval involves searching for the desired image from an image database. It is realized using feature vectors obtained from the architectural image in question. Therefore, feature extraction is a... 详细信息
来源: 评论
content-based image retrieval: A Survey on Local and Global Features Selection, Extraction, Representation, and Evaluation Parameters
收藏 引用
IEEE ACCESS 2023年 11卷 95410-95431页
作者: Srivastava, Divya Singh, Shashank Sheshar Rajitha, B. Verma, Madhushi Kaur, Manjit Lee, Heung-No Bennett Univ Sch Comp Sci Engn & Technol SCSET Greater Noida 201310 India Thapar Inst Engn & Technol Dept Comp Sci & Engn CSED Patiala 147004 India MNNIT Allahabad Dept Comp Sci & Engn CSED Prayagraj 211004 India SR Univ Sch Comp Sci & Artificial Intelligence Warangal 506371 India Gwangju Inst Sci & Technol Sch Elect Engn & Comp Sci Gwangju 61005 South Korea
In the era of massive data production through the internet and social media, the volume of images generated is immense. Storing and retrieving relevant images efficiently pose significant challenges. content-based ima... 详细信息
来源: 评论
content-based image retrieval using a fusion of global and local features
收藏 引用
ETRI JOURNAL 2023年 第3期45卷 505-518页
作者: Bu, Hee Hyung Kim, Nam Chul Kim, Sung Ho Kyungpook Natl Univ Sch Comp Sci & Engn Daegu South Korea Kyungpook Natl Univ Sch Elect Engn Daegu South Korea
Color, texture, and shape act as important information for images in human recognition. For content-based image retrieval, many studies have combined color, texture, and shape features to improve the retrieval perform... 详细信息
来源: 评论
content-based image retrieval using integrated features and multi-subspace randomization and collaboration
收藏 引用
INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT 2022年 第5期13卷 2540-2550页
作者: Kenchappa, Yashaswini Doddamane Kwadiki, Karibasappa Don Bosco Inst Technol Dept Informat Sci & Engn Kumbalagodu India Graph Era Deemed Be Univ Dept Elect & Commun Engn Dehra Dun Uttarakhand India
In the content-based image retrieval process, the semantic gap is a common challenge and the existing Bag-of-words approach is used to reduce the semantic gap. However, the computation complexity was the common proble... 详细信息
来源: 评论
A new texture descriptor based on hexagonal local binary pattern for content-based image retrieval
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 161卷
作者: Fadaei, Sadegh Azadimotlagh, Mehdi Rashno, Armin Beheshti, Amin Univ Yasuj Fac Engn Dept Elect Engn Yasuj Iran Persian Gulf Univ Jam Fac Engn Dept Comp Engn Bushehr Iran Lorestan Univ Fac Engn Dept Comp Engn Khorramabad Iran Macquarie Univ Sch Comp Sydney Australia
S R C Texture features play a vital role in content-based image retrieval (CBIR) applications. Most texture extraction methods have a low accuracy and high feature vector length. This paper presents a novel hexagonal ... 详细信息
来源: 评论
Archimedes Optimization Algorithm With Deep Learning Assisted content-based image retrieval in Healthcare Sector
收藏 引用
IEEE ACCESS 2024年 12卷 29768-29777页
作者: Issaoui, Imene Alohali, Manal Abdullah Mtouaa, Wafa Alotaibi, Faiz Abdullah Mahmud, Ahmed Assiri, Mohammed Qassim Univ Appl Coll Unit Sci Res Buraydah 52571 Saudi Arabia Univ Sfax MIRACL Lab FSEG Sfax 3029 Tunisia Princess Nourah bint Abdulrahman Univ Coll Comp & Informat Sci Dept Comp Sci POB 84428 Riyadh 11671 Saudi Arabia King Khalid Univ Coll Sci & Arts Dept Math Muhayil 62529 Saudi Arabia King Saud Univ Coll Humanities & Social Sci Dept Informat Sci POB 28095 Riyadh 11437 Saudi Arabia Future Univ Egypt Res Ctr New Cairo 11835 Egypt Prince Sattam Bin Abdulaziz Univ Coll Sci & Humanities Aflaj Dept Comp Sci Al Kharj 16273 Saudi Arabia
content-based image retrieval (CBIR) in the healthcare field is an advanced technology that leverages the visual or content features of medical images to retrieve similar images from vast data. This technology has sig... 详细信息
来源: 评论
Development of improved heuristic-assisted deep learning for content-based image retrieval systems using multi-similarity measures
收藏 引用
IMAGING SCIENCE JOURNAL 2025年
作者: Khandelwal, Sarika Vyas, Ruchi Singh, Neha Vyawahare, Harsha G H Raisoni Coll Engn Dept Comp Sci & Engn Nagpur India Geetanjali Inst Tech Studies Udaipur Dept Comp Sci & Engn Udaipur India Galgotias Univ Sch Comp Sci & Engn Gautam Buddha Nagar Uttar Pradesh India St Gadge Baba Amarvati Univ Sipna Coll Engn & Technol Dept Comp Sci & Engn Amaravati India
In this research work, a novel content-based image retrieval (CBIR) model with the utilization of deep learning techniques and adaptive concepts is executed. Initially, the required images are collected from benchmark... 详细信息
来源: 评论
content-based image retrieval for Remote Sensing images using Hybrid Firefly and Grey Wolf Optimization Algorithm
Content-Based Image Retrieval for Remote Sensing Images usin...
收藏 引用
2023 International Conference on Evolutionary Algorithms and Soft Computing Techniques, EASCT 2023
作者: Nijaguna, G.S. S.E.A. College of Engineering and Technology Department of Information Science and Engineering Bangalore India
In recent years, content-based image retrieval (CBIR) has rised as an advanced approach for identifying and retrieving images from a database based on their visual content. CBIR analyzes visual material primarily usin... 详细信息
来源: 评论