咨询与建议

限定检索结果

文献类型

  • 877 篇 期刊文献
  • 870 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 1,767 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,581 篇 工学
    • 1,178 篇 计算机科学与技术...
    • 631 篇 电气工程
    • 322 篇 软件工程
    • 139 篇 信息与通信工程
    • 94 篇 生物医学工程(可授...
    • 90 篇 机械工程
    • 90 篇 控制科学与工程
    • 87 篇 电子科学与技术(可...
    • 51 篇 仪器科学与技术
    • 31 篇 测绘科学与技术
    • 23 篇 材料科学与工程(可...
    • 12 篇 环境科学与工程(可...
    • 10 篇 土木工程
    • 7 篇 网络空间安全
    • 6 篇 力学(可授工学、理...
  • 397 篇 医学
    • 249 篇 临床医学
    • 117 篇 特种医学
    • 81 篇 基础医学(可授医学...
    • 12 篇 中西医结合
  • 254 篇 理学
    • 134 篇 物理学
    • 39 篇 生物学
    • 33 篇 数学
    • 22 篇 地球物理学
    • 22 篇 系统科学
    • 10 篇 化学
  • 115 篇 管理学
    • 79 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 16 篇 公共管理
  • 15 篇 艺术学
    • 12 篇 美术学
  • 14 篇 农学
  • 9 篇 法学
    • 7 篇 社会学
  • 7 篇 教育学
  • 4 篇 文学
  • 3 篇 经济学
  • 2 篇 历史学

主题

  • 1,767 篇 content-based im...
  • 168 篇 relevance feedba...
  • 128 篇 image retrieval
  • 105 篇 feature extracti...
  • 67 篇 ecosystem-based ...
  • 67 篇 art therapy
  • 56 篇 deep learning
  • 44 篇 image classifica...
  • 42 篇 cbir
  • 42 篇 images
  • 32 篇 computer-aided d...
  • 32 篇 semantic gap
  • 31 篇 image segmentati...
  • 31 篇 information retr...
  • 30 篇 clustering
  • 29 篇 image database
  • 29 篇 feature selectio...
  • 28 篇 classification
  • 27 篇 texture
  • 26 篇 image databases

机构

  • 13 篇 nanyang technol ...
  • 10 篇 univ loughboroug...
  • 9 篇 microsoft res as...
  • 9 篇 liaoning normal ...
  • 8 篇 czestochowa tech...
  • 7 篇 univ allahabad d...
  • 6 篇 univ michigan de...
  • 6 篇 aston univ sch e...
  • 6 篇 indian inst tech...
  • 6 篇 singapore manage...
  • 6 篇 michigan state u...
  • 6 篇 kyungpook natl u...
  • 5 篇 univ sydney sydn...
  • 5 篇 utah state univ ...
  • 5 篇 univ engn & tech...
  • 5 篇 sao paulo state ...
  • 5 篇 kyungpook natl u...
  • 5 篇 islamic azad uni...
  • 4 篇 mansoura univ de...
  • 4 篇 univ sydney sch ...

作者

  • 27 篇 guimaraes pedron...
  • 24 篇 torres ricardo d...
  • 21 篇 thoma george r.
  • 21 篇 antani sameer
  • 16 篇 schaefer gerald
  • 14 篇 mueller henning
  • 12 篇 valem lucas pasc...
  • 11 篇 demner-fushman d...
  • 11 篇 long l. rodney
  • 10 篇 scherer rafal
  • 10 篇 hoi steven c. h.
  • 9 篇 yang hong-ying
  • 9 篇 mukhopadhyay sud...
  • 9 篇 wang xiang-yang
  • 8 篇 korytkowski marc...
  • 8 篇 zhang ad
  • 8 篇 long lr
  • 8 篇 edmundson david
  • 7 篇 srivastava prash...
  • 7 篇 zhu jianke

语言

  • 1,712 篇 英文
  • 33 篇 其他
  • 17 篇 中文
  • 4 篇 法文
  • 1 篇 德文
  • 1 篇 土耳其文
检索条件"主题词=Content-based Image retrieval"
1767 条 记 录,以下是1-10 订阅
排序:
content-based image retrieval for Multi-Class Volumetric Radiology images: A Benchmark Study
收藏 引用
IEEE ACCESS 2025年 13卷 68066-68083页
作者: Jush, Farnaz Khun Vogler, Steffen Truong, Tuan Lenga, Matthias Bayer AG Radiol Dept D-13353 Berlin Germany
With the growing number of images generated daily in radiological practices and the digitization of historical studies, we face large databases where metadata can be incomplete or incorrect. content-based image retrie... 详细信息
来源: 评论
A new texture descriptor based on hexagonal local binary pattern for content-based image retrieval
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 161卷
作者: Fadaei, Sadegh Azadimotlagh, Mehdi Rashno, Armin Beheshti, Amin Univ Yasuj Fac Engn Dept Elect Engn Yasuj Iran Persian Gulf Univ Jam Fac Engn Dept Comp Engn Bushehr Iran Lorestan Univ Fac Engn Dept Comp Engn Khorramabad Iran Macquarie Univ Sch Comp Sydney Australia
S R C Texture features play a vital role in content-based image retrieval (CBIR) applications. Most texture extraction methods have a low accuracy and high feature vector length. This paper presents a novel hexagonal ... 详细信息
来源: 评论
Development of improved heuristic-assisted deep learning for content-based image retrieval systems using multi-similarity measures
收藏 引用
IMAGING SCIENCE JOURNAL 2025年
作者: Khandelwal, Sarika Vyas, Ruchi Singh, Neha Vyawahare, Harsha G H Raisoni Coll Engn Dept Comp Sci & Engn Nagpur India Geetanjali Inst Tech Studies Udaipur Dept Comp Sci & Engn Udaipur India Galgotias Univ Sch Comp Sci & Engn Gautam Buddha Nagar Uttar Pradesh India St Gadge Baba Amarvati Univ Sipna Coll Engn & Technol Dept Comp Sci & Engn Amaravati India
In this research work, a novel content-based image retrieval (CBIR) model with the utilization of deep learning techniques and adaptive concepts is executed. Initially, the required images are collected from benchmark... 详细信息
来源: 评论
Deterministic and Probabilistic Certified Defenses for content-based image retrieval
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2025年 第1期E108D卷 92-109页
作者: Kakizaki, Kazuya Fukuchi, Kazuto Sakuma, Jun NEC Corp Ltd Kawasaki 2118666 Japan Univ Tsukuba Tsukuba 3058573 Japan RIKEN AIP Tokyo 1030027 Japan Inst Sci Tokyo Tokyo 1528550 Japan
This paper develops certified defenses for deep neural netexamples (AXs). Previous works put their effort into certified defense for classification to improve certified robustness, which guarantees that no AX to cause... 详细信息
来源: 评论
content-based image retrieval: A Survey on Local and Global Features Selection, Extraction, Representation, and Evaluation Parameters
收藏 引用
IEEE ACCESS 2023年 11卷 95410-95431页
作者: Srivastava, Divya Singh, Shashank Sheshar Rajitha, B. Verma, Madhushi Kaur, Manjit Lee, Heung-No Bennett Univ Sch Comp Sci Engn & Technol SCSET Greater Noida 201310 India Thapar Inst Engn & Technol Dept Comp Sci & Engn CSED Patiala 147004 India MNNIT Allahabad Dept Comp Sci & Engn CSED Prayagraj 211004 India SR Univ Sch Comp Sci & Artificial Intelligence Warangal 506371 India Gwangju Inst Sci & Technol Sch Elect Engn & Comp Sci Gwangju 61005 South Korea
In the era of massive data production through the internet and social media, the volume of images generated is immense. Storing and retrieving relevant images efficiently pose significant challenges. content-based ima... 详细信息
来源: 评论
content-based image retrieval by combining convolutional neural networks and sparse representation
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第15期78卷 20895-20912页
作者: Sezavar, Amir Farsi, Hassan Mohamadzadeh, Sajad Univ Birjand Dept Elect & Comp Engn Birjand Iran
As stored data and images on memory disks increase, image retrieval has a necessary task on image processing. Although lots of researches have been reported for this task so far, semantic gap between low level feature... 详细信息
来源: 评论
content-based image retrieval OF CULTURAL HERITAGE SYMBOLS BY INTERACTION OF VISUAL PERSPECTIVES
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2011年 第5期25卷 643-673页
作者: Kwan, Paul W. Kameyama, Keisuke Gao, Junbin Toraichi, Kazuo Univ New England Sch Sci & Technol Armidale NSW 2351 Australia Univ Tsukuba Grad Sch SIE Dept Comp Sci Tsukuba Ibaraki 3058573 Japan Charles Sturt Univ Sch Comp & Math Bathurst NSW 2795 Australia Univ Tsukuba Tsukuba Ind Liaison & Cooperat Res Ctr Fluency Labs Inc Tsukuba Ibaraki 2058573 Japan
content-based image retrieval (CBIR) has been an active area of research for retrieving similar images from large repositories, without the prerequisite of manual labeling. Most current CBIR algorithms can faithfully ... 详细信息
来源: 评论
content-based image retrieval System for Pulmonary Nodules: Assisting Radiologists in Self-Learning and Diagnosis of Lung Cancer
收藏 引用
JOURNAL OF DIGITAL IMAGING 2017年 第1期30卷 63-77页
作者: Dhara, Ashis Kumar Mukhopadhyay, Sudipta Dutta, Anirvan Garg, Mandeep Khandelwal, Niranjan Indian Inst Technol Elect & Elect Commun Engn Kharagpur 721302 W Bengal India Birla Inst Technol Mesra Elect & Commun Engn Ranchi 835215 Bihar India Post Grad Inst Med Educ & Res Dept Radio Diag & Imaging Chandigarh 160012 India
Visual information of similar nodules could assist the budding radiologists in self-learning. This paper presents a content-based image retrieval (CBIR) system for pulmonary nodules, observed in lung CT images. The re... 详细信息
来源: 评论
content-based image retrieval using fuzzy perceptual feedback
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2007年 第3期32卷 235-251页
作者: Wu, Kui Yap, Kim-Hui Nanyang Technol Univ Sch Elect & Elect Engn Media Technol Lab Singapore 639798 Singapore
In this paper, a new framework called fuzzy relevance feedback in interactive content-based image retrieval (CBIR) systems is introduced. Conventional binary labeling scheme in relevance feedback requires a crisp deci... 详细信息
来源: 评论
content-based image retrieval using association rule mining with soft relevance feedback
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND image REPRESENTATION 2006年 第5期17卷 1108-1125页
作者: Yin, Peng-Yeng Li, Shin-Huei Natl Chi Nan Univ Dept Informat Management Puli 545 Nantou Taiwan
With the rapid development of internet technology, the transmission and access of image items have become easier and the volume of image repository is exploding. An efficient and effective query reformulation is neede... 详细信息
来源: 评论