咨询与建议

限定检索结果

文献类型

  • 877 篇 期刊文献
  • 870 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 1,767 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,581 篇 工学
    • 1,178 篇 计算机科学与技术...
    • 631 篇 电气工程
    • 322 篇 软件工程
    • 139 篇 信息与通信工程
    • 94 篇 生物医学工程(可授...
    • 90 篇 机械工程
    • 90 篇 控制科学与工程
    • 87 篇 电子科学与技术(可...
    • 51 篇 仪器科学与技术
    • 31 篇 测绘科学与技术
    • 23 篇 材料科学与工程(可...
    • 12 篇 环境科学与工程(可...
    • 10 篇 土木工程
    • 7 篇 网络空间安全
    • 6 篇 力学(可授工学、理...
  • 397 篇 医学
    • 249 篇 临床医学
    • 117 篇 特种医学
    • 81 篇 基础医学(可授医学...
    • 12 篇 中西医结合
  • 254 篇 理学
    • 134 篇 物理学
    • 39 篇 生物学
    • 33 篇 数学
    • 22 篇 地球物理学
    • 22 篇 系统科学
    • 10 篇 化学
  • 115 篇 管理学
    • 79 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
    • 16 篇 公共管理
  • 15 篇 艺术学
    • 12 篇 美术学
  • 14 篇 农学
  • 9 篇 法学
    • 7 篇 社会学
  • 7 篇 教育学
  • 4 篇 文学
  • 3 篇 经济学
  • 2 篇 历史学

主题

  • 1,767 篇 content-based im...
  • 168 篇 relevance feedba...
  • 128 篇 image retrieval
  • 105 篇 feature extracti...
  • 67 篇 ecosystem-based ...
  • 67 篇 art therapy
  • 56 篇 deep learning
  • 44 篇 image classifica...
  • 42 篇 cbir
  • 42 篇 images
  • 32 篇 computer-aided d...
  • 32 篇 semantic gap
  • 31 篇 image segmentati...
  • 31 篇 information retr...
  • 30 篇 clustering
  • 29 篇 image database
  • 29 篇 feature selectio...
  • 28 篇 classification
  • 27 篇 texture
  • 26 篇 image databases

机构

  • 13 篇 nanyang technol ...
  • 10 篇 univ loughboroug...
  • 9 篇 microsoft res as...
  • 9 篇 liaoning normal ...
  • 8 篇 czestochowa tech...
  • 7 篇 univ allahabad d...
  • 6 篇 univ michigan de...
  • 6 篇 aston univ sch e...
  • 6 篇 indian inst tech...
  • 6 篇 singapore manage...
  • 6 篇 michigan state u...
  • 6 篇 kyungpook natl u...
  • 5 篇 univ sydney sydn...
  • 5 篇 utah state univ ...
  • 5 篇 univ engn & tech...
  • 5 篇 sao paulo state ...
  • 5 篇 kyungpook natl u...
  • 5 篇 islamic azad uni...
  • 4 篇 mansoura univ de...
  • 4 篇 univ sydney sch ...

作者

  • 27 篇 guimaraes pedron...
  • 24 篇 torres ricardo d...
  • 21 篇 thoma george r.
  • 21 篇 antani sameer
  • 16 篇 schaefer gerald
  • 14 篇 mueller henning
  • 12 篇 valem lucas pasc...
  • 11 篇 demner-fushman d...
  • 11 篇 long l. rodney
  • 10 篇 scherer rafal
  • 10 篇 hoi steven c. h.
  • 9 篇 yang hong-ying
  • 9 篇 mukhopadhyay sud...
  • 9 篇 wang xiang-yang
  • 8 篇 korytkowski marc...
  • 8 篇 zhang ad
  • 8 篇 long lr
  • 8 篇 edmundson david
  • 7 篇 srivastava prash...
  • 7 篇 zhu jianke

语言

  • 1,712 篇 英文
  • 33 篇 其他
  • 17 篇 中文
  • 4 篇 法文
  • 1 篇 德文
  • 1 篇 土耳其文
检索条件"主题词=Content-based Image retrieval"
1767 条 记 录,以下是61-70 订阅
排序:
content-based image retrieval using shifted histogram
Content-based image retrieval using shifted histogram
收藏 引用
7th International Conference on Computational Science (ICCS 2007)
作者: Yoo, Gi-Hyoung Kim, Beob Kyun You, Kang Soo Chonbuk Natl Univ Dept Comp Engn Jeonju 561756 South Korea Korea Inst Sci & Technol Informat Daejeon 350806 South Korea Jeonju Univ Sch Liberal Arts Jeonju 561756 South Korea
This paper proposes the shifted histogram method (SHM), for histogram-based image retrieval based on the dominant colors in images. The histogram-based method is very suitable for color image retrieval because retriev... 详细信息
来源: 评论
content-based image retrieval using Convolutional Neural Networks
Content-Based Image Retrieval using Convolutional Neural Net...
收藏 引用
IEEE International Conference on Signals and Systems (ICSigSys)
作者: Rian, Zakhayu Christanti, Viny Hendryli, Janson Tarumangara Univ Fac Informat Technol Jakarta Indonesia
Searching a collection of images that have similarities with input images, without knowing the name of the image, makes a search system that applies the concept of content-based image retrieval (CBIR), is very necessa... 详细信息
来源: 评论
content-based image retrieval Using Color Difference Histogram in image Textures  5
Content-based Image Retrieval Using Color Difference Histogr...
收藏 引用
5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS)
作者: Ajam, Armin Forghani, Majid AlyanNezhadi, Mohammad M. Qazanfari, Hamed Amiri, Zahra Shahrood Nonprofit & Nongovt Higher Edu Inst Dept Comp Engn Shahrood Iran Ural Fed Univ Inst Nat Sci & Math Ekaterinburg Russia Shahrood Univ Technol Image Proc & Data Min Lab Shahrood Iran
The aim of content-based image retrieval system is finding similar images to the query image from a database based on its visual content. In this paper, a novel retrieval system based on human vision is proposed. A fa... 详细信息
来源: 评论
content-based image retrieval using Scale Invariant Feature Transform and Gray Level Cooccurrence Matrix  2
Content-Based Image Retrieval using Scale Invariant Feature ...
收藏 引用
2nd International Workshop on Pattern Recognition
作者: Srivastava, Prashant Khare, Manish Khare, Ashish Univ Allahabad Dept Elect & Commun Allahabad Uttar Pradesh India GIST Sch Informat & Commun Gwangju 500712 South Korea
The rapid growth of different types of images has posed a great challenge to the scientific fraternity. As the images are increasing everyday, it is becoming a challenging task to organize the images for efficient and... 详细信息
来源: 评论
content-based image retrieval in the Topic Space using SOM and LDA  3
Content-Based Image Retrieval in the Topic Space using SOM a...
收藏 引用
INTERNATIONAL CONFERENCE ON CONTROL ENGINEERING & INFORMATION TECHNOLOGY (CEIT)
作者: Ayech, Marouane Ben Haj Amiri, Hamid Univ Tunis El Manar Natl Sch Engn Tunis Tunis Tunisia
content-based image retrieval (CBIR) becomes necessary when dealing with large collections of images. Recently, interesting retrieval methods are based on Bag-of-Words (BoW) model. It allows the projection of an image... 详细信息
来源: 评论
content-based image retrieval using a Gaussian mixture model in the wavelet domain
Content-based image retrieval using a Gaussian mixture model...
收藏 引用
Conference on Visual Communications and image Processing 2003
作者: Yuan, H Zhang, XP Guan, L Ryerson Univ Dept Elect & Comp Engn Toronto ON M5B 2K3 Canada
The research on content-based image retrieval (CBIR) has been very active in recent years. The performance of a CBIR system can be significantly improved by selecting a good indexing feature space to represent image c... 详细信息
来源: 评论
content-based image retrieval Using Local Texture-based Color Histogram  2
Content-based Image Retrieval Using Local Texture-Based Colo...
收藏 引用
IEEE 2nd International Conference on Cybernetics (CYBCONF)
作者: Nan, Bingfei Xu, Ye Mu, Zhichun Chen, Long Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing Peoples R China Jiangxi Univ Sci & Technol Sch Informat Engn Ganzhou Jiangxi Peoples R China
this paper presents a novel image feature representation method, called local texture-based color histogram (LTCH), for content-based image retrieval. The LTCH can describe the color distribution under a mask, which i... 详细信息
来源: 评论
content-based image retrieval as a computer aid for the detection of mammographic masses
Content-based image retrieval as a computer aid for the dete...
收藏 引用
Medical Imaging 2003 Conference
作者: Tourassi, GD Vargas-Voracek, R Floyd, CE Duke Univ Med Ctr Dept Radiol Durham NC 27710 USA
The purpose of the study was to develop and evaluate a content-based image retrieval (CBIR) approach as a computer aid for the detection of masses in screening mammograms. The study was based on the Digital Database f... 详细信息
来源: 评论
content-based image retrieval On Reconfigurable Peer-To-Peer Networks
Content-Based Image Retrieval On Reconfigurable Peer-To-Peer...
收藏 引用
14th IEEE International Workshop on Multimedia Signal Processing (MMSP)
作者: Su, Chun-Rong Chen, Jiann-Jone Natl Taiwan Univ Sci & Technol Dept Elect Engn Taipei 10673 Taiwan
Performing content-based image retrieval (CBIR) from Internet databases connected through Peer-to-Peer (P2P) network, abbreviated as P2P-CBIR, helps to effectively explore the large-scale image database distributed ov... 详细信息
来源: 评论
content-based image retrieval on Reconfigurable Peer-to-Peer Networks
Content-Based Image Retrieval on Reconfigurable Peer-to-Peer...
收藏 引用
International Symposium on Biometrics and Security Technologies (ISBAST)
作者: Su, Chun-Rong Chen, Jiann-Jone Chang, Kai-Lin Natl Taiwan Univ Sci & Technol Dept Elect Engn Taipei 10673 Taiwan
Performing content-based image retrieval (CBIR) from Internet databases connected through Peer-to-Peer (P2P) network, abbreviated as P2P-CBIR, helps to effectively explore the large-scale image database distributed ov... 详细信息
来源: 评论