咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 计算机科学与技术...

主题

  • 3 篇 continuous activ...
  • 2 篇 self-modeling
  • 2 篇 hebbian learning
  • 2 篇 hopfield neural ...
  • 1 篇 clustering algor...
  • 1 篇 rule extraction ...
  • 1 篇 pruning algorith...
  • 1 篇 symbolic rules
  • 1 篇 constructive alg...
  • 1 篇 backpropagation

机构

  • 1 篇 intituto de inve...
  • 1 篇 centro de cienci...
  • 1 篇 univ nacl autono...
  • 1 篇 univ nacl autono...
  • 1 篇 hankuk univ fore...

作者

  • 1 篇 mario zarco
  • 1 篇 kamruzzaman s. m...
  • 1 篇 tom froese
  • 1 篇 sarkar a. m. jeh...
  • 1 篇 zarco mario
  • 1 篇 hamid md. abdul
  • 1 篇 froese tom

语言

  • 3 篇 英文
检索条件"主题词=Continuous activation function"
3 条 记 录,以下是1-10 订阅
排序:
Self-modeling in Hopfield Neural Networks with continuous activation function  8
Self-modeling in Hopfield Neural Networks with Continuous Ac...
收藏 引用
8th Annual International Conference of the Biologically-Inspired-Cognitive Architectures-Society on Biologically Inspired Cognitive Architectures (BICA)
作者: Zarco, Mario Froese, Tom Univ Nacl Autonoma Mexico Intituto Invest Matemat Apl & Sistemas Mexico City DF Mexico Univ Nacl Autonoma Mexico Ctr Ciencias Complejidad Mexico City DF Mexico
Hopfield networks can exhibit many different attractors of which most are local optima. It has been demonstrated that combining states randomization and Hebbian learning enlarges the basin of attraction of globally op... 详细信息
来源: 评论
Self-modeling in Hopfield Neural Networks with continuous activation function
收藏 引用
Procedia Computer Science 2018年 123卷 573-578页
作者: Mario Zarco Tom Froese Intituto de Investigaciones en Matemáticas Aplicas y en Sistemas Universidad Nacional Autónoma de México Mexico City Mexico Centro de Ciencias de la Complejidad Universidad Nacional Autónoma de México Mexico City Mexico
Hopfield networks can exhibit many different attractors of which most are local optima. It has been demonstrated that combining states randomization and Hebbian learning enlarges the basin of attraction of globally op... 详细信息
来源: 评论
ERANN: An Algorithm to Extract Symbolic Rules from Trained Artificial Neural Networks
收藏 引用
IETE JOURNAL OF RESEARCH 2012年 第2期58卷 138-154页
作者: Kamruzzaman, S. M. Hamid, Md. Abdul Sarkar, A. M. Jehad Hankuk Univ Foreign Studies Dept Elect Engn Yongin 449791 Kyonggi Do South Korea
This paper presents an algorithm to extract symbolic rules from trained artificial neural networks (ANNs), called ERANN. In many applications, it is desirable to extract knowledge from ANNs for the users to gain a bet... 详细信息
来源: 评论