咨询与建议

限定检索结果

文献类型

  • 54 篇 期刊文献
  • 27 篇 会议

馆藏范围

  • 81 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 53 篇 计算机科学与技术...
    • 31 篇 电气工程
    • 13 篇 控制科学与工程
    • 12 篇 软件工程
    • 9 篇 机械工程
    • 8 篇 信息与通信工程
    • 7 篇 仪器科学与技术
    • 3 篇 电子科学与技术(可...
    • 3 篇 测绘科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 化学工程与技术
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 网络空间安全
  • 13 篇 理学
    • 4 篇 物理学
    • 3 篇 数学
    • 3 篇 地球物理学
    • 3 篇 生物学
    • 3 篇 系统科学
    • 2 篇 化学
    • 1 篇 地理学
    • 1 篇 大气科学
  • 10 篇 医学
    • 7 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 81 篇 convolutional au...
  • 14 篇 deep learning
  • 8 篇 convolutional ne...
  • 6 篇 fault diagnosis
  • 6 篇 feature extracti...
  • 5 篇 anomaly detectio...
  • 4 篇 image reconstruc...
  • 4 篇 convolutional ne...
  • 2 篇 reinforcement le...
  • 2 篇 invariant featur...
  • 2 篇 image retrieval
  • 2 篇 layout analysis
  • 2 篇 cnn
  • 2 篇 specific feature
  • 2 篇 machine learning
  • 2 篇 neural network
  • 2 篇 multi-source dat...
  • 2 篇 image hashing
  • 2 篇 person re-recogn...
  • 2 篇 fault detection

机构

  • 2 篇 chinese acad sci...
  • 2 篇 shanghai jiao to...
  • 2 篇 tongji univ sch ...
  • 1 篇 loughborough uni...
  • 1 篇 northwestern pol...
  • 1 篇 yuan ze univ dep...
  • 1 篇 univ abderrahman...
  • 1 篇 csir cent inst m...
  • 1 篇 shahed univ elec...
  • 1 篇 naval univ engn ...
  • 1 篇 northeast normal...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ bergamo dep...
  • 1 篇 beijing jiaotong...
  • 1 篇 beijing jiaotong...
  • 1 篇 kings coll londo...
  • 1 篇 mcmaster univ el...
  • 1 篇 kings coll londo...
  • 1 篇 southwest jiaoto...
  • 1 篇 henan univ techn...

作者

  • 3 篇 yu jianbo
  • 2 篇 seuret mathias
  • 2 篇 liu xing
  • 2 篇 ingold rolf
  • 2 篇 liu shuo
  • 2 篇 zareapoor masoum...
  • 2 篇 yang jie
  • 2 篇 liwicki marcus
  • 1 篇 liu bowen
  • 1 篇 garz angelika
  • 1 篇 yan yongjie
  • 1 篇 khyam m. o.
  • 1 篇 lin chih-min
  • 1 篇 moattar mohammad...
  • 1 篇 wang lijun
  • 1 篇 wu siyuan
  • 1 篇 alanezi mohammed...
  • 1 篇 bouchekara houss...
  • 1 篇 hamdi slim
  • 1 篇 gu de

语言

  • 78 篇 英文
  • 1 篇 法文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Convolutional Auto-Encoder"
81 条 记 录,以下是71-80 订阅
排序:
Topic driven multimodal similarity learning with multi-view voted convolutional features
收藏 引用
PATTERN RECOGNITION 2018年 75卷 223-234页
作者: Gao, Xinjian Mu, Tingting Goulermas, John Y. Wang, Meng Hefei Univ Technol Sch Comp & Informat Hefei Anhui Peoples R China Univ Manchester Sch Comp Sci Manchester M1 7DN Lancs England Univ Liverpool Dept Comp Sci Liverpool L69 3BX Merseyside England
Similarity (and distance metric) learning plays a very important role in many artificial intelligence tasks aiming at quantifying the relevance between objects. We address the challenge of learning complex relation pa... 详细信息
来源: 评论
Efficient EEG Mobile Edge Computing and Optimal Resource Allocation for Smart Health Applications  15
Efficient EEG Mobile Edge Computing and Optimal Resource All...
收藏 引用
15th IEEE International Wireless Communications and Mobile Computing Conference (IEEE IWCMC)
作者: Al-Marridi, Abeer Z. Mohamed, Amr Erbad, Aiman Al-Ali, Abdulla Guizani, Mohsen Qatar Univ Dept Comp Sci & Engn Doha 2713 Qatar
In the past few years, a rapid increase in the number of patients requiring constant monitoring, which inspires researchers to develop intelligent and sustainable remote smart healthcare services. However, the transmi... 详细信息
来源: 评论
A Novel Framework for Maternal ECG Removal from Single-Channel Abdominal Recording
A Novel Framework for Maternal ECG Removal from Single-Chann...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Zhong, Wei Cao, Zhongping Guo, Xuemei Wang, Guoli Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Beijing Peoples R China
Objective: Abdominal ECG (AECG) recorded at the maternal abdomen is significantly affected by the maternal ECG (MECG), making the extraction of FECG a challenging task. This paper presents a new MECG elimination metho... 详细信息
来源: 评论
UNSUPERVISED DEEP TRANSFER FEATURE LEARNING FOR MEDICAL IMAGE CLASSIFICATION  16
UNSUPERVISED DEEP TRANSFER FEATURE LEARNING FOR MEDICAL IMAG...
收藏 引用
16th IEEE International Symposium on Biomedical Imaging (ISBI)
作者: Ahn, Euijoon Kumar, Ashnil Feng, Dagan Fulham, Michael Kim, Jinman Univ Sydney Sch Comp Sci Sydney NSW Australia Royal Prince Alfred Hosp Dept Mol Imaging Camperdown NSW Australia Univ Sydney Sydney Med Sch Sydney NSW Australia Shanghai Jiao Tong Univ Med X Res Inst Shanghai Peoples R China
The accuracy and robustness of image classification with supervised deep learning are dependent on the availability of large-scale, annotated training data. However, there is a paucity of annotated data available due ... 详细信息
来源: 评论
CARISI: convolutional autoencoder-BASED INTER-SLICE INTERPOLATION OF BRAIN TUMOR VOLUMETRIC IMAGES  25
CARISI: CONVOLUTIONAL AUTOENCODER-BASED INTER-SLICE INTERPOL...
收藏 引用
25th IEEE International Conference on Image Processing (ICIP)
作者: Afshar, Parnian Shahroudnejad, Atefeh Mohammadi, Arash Plataniotis, Konstantinos N. Concordia Univ Concordia Inst Informat Syst Engn Montreal PQ Canada Univ Toronto Dept Elect & Comp Engn Toronto ON Canada
The paper is motivated by the fact that brain cancer is one of the deadliest cancers and its detection in early stages is of paramount importance. In this regard, tumor 3D shape reconstruction from magnetic resonance ... 详细信息
来源: 评论
Deep Discriminative Clustering Network
Deep Discriminative Clustering Network
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Shao, Xuying Ge, Keshi Su, Huayou Luo, Lei Peng, Baoyun Li, Dongsheng Natl Univ Def Technol Sci & Technol Parallel & Distributed Lab Changsha Peoples R China Natl Univ Def Technol Coll Comp Changsha Peoples R China
Deep clustering aims to cluster unlabeled data by embedding them into a subspace based on deep model. The key challenge of deep clustering is to learn discriminative representations for input data with high dimensions... 详细信息
来源: 评论
Unfeatured Weld Positioning Technology Based on Neural Network and Machine Vision  3
Unfeatured Weld Positioning Technology Based on Neural Netwo...
收藏 引用
3rd IEEE International Conference on Image, Vision and Computing (ICIVC)
作者: Cai, Chengtao Wang, Boyu Liu, Yue Yan, Yongjie Harbin Engn Univ Coll Automat Harbin Heilongjiang Peoples R China State Key Lab Air Traff Management Syst & Technol Nanjing Jiangsu Peoples R China
In machine vision, image processing technology is the basis of target recognition and positioning. When the background of the image is complex, especially when the background feature is similar to the target feature, ... 详细信息
来源: 评论
Deep Supervised auto-encoder Hashing for Image Retrieval  1st
Deep Supervised Auto-encoder Hashing for Image Retrieval
收藏 引用
1st Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Tang, Sanli Chi, Haoyuan Yang, Jie Huang, Xiaolin Zareapoor, Masoumeh Shanghai Jiao Tong Univ Inst Image Proc & Pattern Recognit Shanghai Peoples R China
Image hashing approaches map high dimensional images to compact binary codes that preserve similarities among images. Although the image label is important information for supervised image hashing methods to generate ... 详细信息
来源: 评论
N-light-N: A Highly-Adaptable Java Library for Document Analysis with convolutional auto-encoders and Related Architectures  15
<i>N-light-N</i>: A Highly-Adaptable Java Library for Docume...
收藏 引用
15th International Conference on Frontiers in Handwriting Recognition (ICFHR)
作者: Seuret, Mathias Ingold, Rolf Liwicki, Marcus Univ Fribourg Document Image & Voice Anal Grp Fribourg Switzerland
This paper presents a novel, highly-adaptable Java framework N-light-N, for the work with deep neural networks, especially with convolutional auto-encoders (CAE). While the most popular deep learning libraries focus o... 详细信息
来源: 评论
Diverse Activation Functions in Deep Learning  12
Diverse Activation Functions in Deep Learning
收藏 引用
12th International Conference on Intelligent Systems and Knowledge Engineering (IEEE ISKE)
作者: Wang, Bin Li, Tianrui Huang, Yanyong Luo, Huaishao Guo, Dongming Horng, Shi-Jinn Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 611756 Sichuan Peoples R China Natl Taiwan Univ Sci & Technol Dept Comp Sci & Informat Engn Taipei 106 Taiwan
We introduce the concept of diverse activation functions, and apply them into convolutional auto-encoder (CAE) to develop diverse activation CAE (DaCAE), which considerably reduces the reconstruction loss. In contrast... 详细信息
来源: 评论