咨询与建议

限定检索结果

文献类型

  • 282 篇 期刊文献
  • 122 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 407 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 373 篇 工学
    • 202 篇 计算机科学与技术...
    • 134 篇 电气工程
    • 47 篇 信息与通信工程
    • 35 篇 仪器科学与技术
    • 30 篇 控制科学与工程
    • 24 篇 生物医学工程(可授...
    • 23 篇 软件工程
    • 21 篇 机械工程
    • 19 篇 石油与天然气工程
    • 14 篇 测绘科学与技术
    • 14 篇 环境科学与工程(可...
    • 12 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 4 篇 建筑学
    • 4 篇 交通运输工程
    • 4 篇 船舶与海洋工程
  • 103 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 16 篇 地球物理学
    • 11 篇 数学
    • 4 篇 系统科学
  • 49 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 31 篇 管理学
    • 27 篇 管理科学与工程(可...
  • 10 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 407 篇 convolutional au...
  • 96 篇 deep learning
  • 38 篇 anomaly detectio...
  • 38 篇 feature extracti...
  • 30 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 24 篇 machine learning
  • 11 篇 convolution
  • 9 篇 semi-supervised ...
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 395 篇 英文
  • 11 篇 其他
检索条件"主题词=Convolutional Autoencoder"
407 条 记 录,以下是111-120 订阅
排序:
Spatially Variant convolutional autoencoder Based on Patch Division for Pill Defect Detection
收藏 引用
IEEE ACCESS 2020年 8卷 216781-216792页
作者: Kim, Sora Jo, Youngjae Cho, Jungchan Song, Jiwoo Lee, Younyoung Lee, Minsik Hanyang Univ Dept Elect & Elect Engn Ansan 15588 South Korea Hyundai Mobis Co Ltd ADAS Platform Cell Team Yongin 16891 South Korea Gachon Univ Coll Informat Technol Seongnam 13120 South Korea Daekhon Corp Adv Technol Ctr Seoul 08381 South Korea
Detecting pill defection remains challenging, despite recent extensive studies, because of the lack of defective data. In this paper, we propose a pipeline composed of a pill detection module and an autoencoder-based ... 详细信息
来源: 评论
ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2022年 第1期23卷 bbab321-bbab321页
作者: Hu, Hang Li, Zhong Li, Xiangjie Yu, Minzhe Pan, Xiutao Zhejiang Sci Tech Univ Hangzhou Peoples R China Chinese Acad Med Sci Beijing Peoples R China Peking Union Med Coll Beijing Peoples R China Nankai Univ Sch Stat & Data Sci Tianjin Peoples R China
Clustering and cell type classification are a vital step of analyzing scRNA-seq data to reveal the complexity of the tissue (e.g. the number of cell types and the transcription characteristics of the respective cell t... 详细信息
来源: 评论
One-Class Classification in Images and Videos Using a convolutional autoencoder With Compact Embedding
收藏 引用
IEEE ACCESS 2020年 8卷 86520-86535页
作者: Ribeiro, Manasses Gutoski, Matheus Lazzaretti, Andre E. Lopes, Heitor S. Catarinense Fed Inst Educ Sci & Technol IFC BR-89560000 Videira Brazil Fed Univ Technol Parana UTFPR BR-3165 Curitiba Parana Brazil
In One-Class Classification (OCC) problems, the classifier is trained with samples of a class considered normal, such that exceptional patterns can be identified as anomalies. Indeed, for real-world problems, the repr... 详细信息
来源: 评论
Energy Compaction-Based Image Compression Using convolutional autoencoder
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2020年 第4期22卷 860-873页
作者: Cheng, Zhengxue Sun, Heming Takeuchi, Masaru Katto, Jiro Waseda Univ Grad Sch Fundamental Sci & Engn Dept Comp Sci & Commun Engn Tokyo 1698555 Japan Waseda Res Inst Sci & Engn Tokyo 1698555 Japan JST PRESTO 4-1-8 Honcho Kawaguchi Saitama 3320012 Japan
Image compression has been an important research topic for many decades. Recently, deep learning has achieved great success in many computer vision tasks, and its use in image compression has gradually been increasing... 详细信息
来源: 评论
Image denoising using deep convolutional autoencoder with feature pyramids
收藏 引用
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES 2020年 第4期28卷 2096-2109页
作者: Cetinkaya, Ekrem Kirac, M. Furkan Ozyegin Univ Dept Engn Fac Comp Sci Istanbul Turkey Alpen Adria Univ Klagenfurt ITEC Inst Informat Technol Klagenfurt Austria
Image denoising is 1 of the fundamental problems in the image processing field since it is the preliminary step for many computer vision applications. Various approaches have been used for image denoising throughout t... 详细信息
来源: 评论
Vector Quantized convolutional autoencoder for Low-Dose CT Image Reconstruction with Perceptual and Bias Reducing Loss
Journal of Uncertain Systems
收藏 引用
Journal of Uncertain Systems 2023年 第4期16卷
作者: Ramanathan, Shalini Ramasundaram, Mohan National Institute of Technology Tiruchirappalli Tamil Nadu India
In medical imaging, Computed Tomography (CT) is one of the most often utilized imaging modalities for diagnosing different disorders. Deep learning has become significant in the field of medical imaging, specifically ... 详细信息
来源: 评论
Learning Unsupervised Visual Representations using 3D convolutional autoencoder with Temporal Contrastive Modeling for Video Retrieval
INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGE...
收藏 引用
INTERNATIONAL JOURNAL OF MATHEMATICAL ENGINEERING AND MANAGEMENT SCIENCES 2022年 第2期7卷 272-287页
作者: Kumar, Vidit Tripathi, Vikas Pant, Bhaskar Graph Era Deemed Be Univ Dehradun Dept Comp Sci & Engn Dehra Dun Uttarakhand India
The rapid growth of tag-free user-generated videos (on the Internet), surgical recorded videos, and surveillance videos has necessitated the need for effective content-based video retrieval systems. Earlier methods fo... 详细信息
来源: 评论
Robust Place Recognition Using Illumination-compensated Image-based Deep convolutional autoencoder Features
收藏 引用
INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS 2020年 第10期18卷 2699-2707页
作者: Park, Chansoo Chae, Hee-Won Song, Jae-Bok Korea Univ Sch Mechatron 145 Anam Ro Seoul South Korea Korea Univ Sch Mech Engn 145 Anam Ro Seoul South Korea
Place recognition is a method for determining whether a robot has previously visited the place it currently observes, thus helping the robot correct its accumulated position error. Ultimately, the robot will travel lo... 详细信息
来源: 评论
Video Anomaly Detection Based on convolutional Recurrent autoencoder
收藏 引用
SENSORS 2022年 第12期22卷 4647-4647页
作者: Wang, Bokun Yang, Caiqian Xiangtan Univ Coll Civil Engn & Mech Xiangtan 411100 Peoples R China Southeast Univ Sch Civil Engn Nanjing 210096 Peoples R China
As an essential task in computer vision, video anomaly detection technology is used in video surveillance, scene understanding, road traffic analysis and other fields. However, the definition of anomaly, scene change ... 详细信息
来源: 评论
Novel statistical downscaling emulator for precipitation projections using deep convolutional autoencoder over Northern Africa
收藏 引用
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS 2021年 218卷 105614-105614页
作者: Babaousmail, Hassen Hou, Rongtao Gnitou, Gnim Tchalim Ayugi, Brian Nanjing Univ Informat Sci & Technol Binjiang Coll Wuxi Jiangsu Peoples R China Nanjing Univ Informat Sci & Technol Sch Comp & Software Nanjing 210044 Jiangsu Peoples R China Nanjing Univ Informat Sci & Technol Jiangsu Key Lab Atmospher Environm Monitoring & P Collaborat Innovat Ctr Atmospher Environm & Equip Sch Environm Sci & Engn Nanjing 210044 Peoples R China Org African Acad Doctors OAAD Off Kamiti Rd POB 25305-00100 Nairobi Kenya
This study employed Machine Learning (ML) technique known as convolutional autoencoder to build Statistical Downscaling Model (SDM) emulator. Eight General Circulation Models (GCMs) rainfall datasets were selected und... 详细信息
来源: 评论