咨询与建议

限定检索结果

文献类型

  • 288 篇 期刊文献
  • 123 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 412 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 379 篇 工学
    • 206 篇 计算机科学与技术...
    • 135 篇 电气工程
    • 48 篇 信息与通信工程
    • 35 篇 仪器科学与技术
    • 31 篇 控制科学与工程
    • 25 篇 软件工程
    • 24 篇 生物医学工程(可授...
    • 22 篇 机械工程
    • 19 篇 石油与天然气工程
    • 15 篇 测绘科学与技术
    • 14 篇 环境科学与工程(可...
    • 12 篇 材料科学与工程(可...
    • 10 篇 电子科学与技术(可...
    • 10 篇 土木工程
    • 9 篇 动力工程及工程热...
    • 8 篇 化学工程与技术
    • 6 篇 力学(可授工学、理...
    • 5 篇 航空宇航科学与技...
    • 4 篇 建筑学
  • 105 篇 理学
    • 38 篇 物理学
    • 30 篇 生物学
    • 17 篇 化学
    • 17 篇 地球物理学
    • 11 篇 数学
    • 4 篇 大气科学
    • 4 篇 系统科学
  • 49 篇 医学
    • 26 篇 临床医学
    • 17 篇 基础医学(可授医学...
    • 10 篇 特种医学
  • 32 篇 管理学
    • 28 篇 管理科学与工程(可...
  • 10 篇 农学
  • 2 篇 法学
  • 2 篇 文学
  • 1 篇 经济学
  • 1 篇 教育学

主题

  • 412 篇 convolutional au...
  • 97 篇 deep learning
  • 38 篇 feature extracti...
  • 37 篇 anomaly detectio...
  • 30 篇 convolutional ne...
  • 26 篇 unsupervised lea...
  • 23 篇 machine learning
  • 11 篇 convolution
  • 9 篇 fault detection
  • 8 篇 clustering
  • 8 篇 semi-supervised ...
  • 8 篇 image reconstruc...
  • 8 篇 deep clustering
  • 7 篇 semiconductor ma...
  • 7 篇 transfer learnin...
  • 7 篇 training
  • 6 篇 fault diagnosis
  • 6 篇 deep neural netw...
  • 6 篇 dimensionality r...
  • 6 篇 neural networks

机构

  • 4 篇 tongji univ sch ...
  • 3 篇 univ chinese aca...
  • 3 篇 higher coll tech...
  • 3 篇 northwestern pol...
  • 3 篇 inha univ dept c...
  • 3 篇 cesat islamabad ...
  • 2 篇 southwest jiaoto...
  • 2 篇 univ padua dept ...
  • 2 篇 sogang univ dept...
  • 2 篇 southeast univ s...
  • 2 篇 fraunhofer igd r...
  • 2 篇 florida atlantic...
  • 2 篇 univ med ctr utr...
  • 2 篇 univ med ctr utr...
  • 2 篇 chinese acad sci...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ nacl jorge ...
  • 2 篇 southeast univ s...
  • 2 篇 univ calif davis...
  • 2 篇 univ texas san a...

作者

  • 4 篇 susto gian anton...
  • 3 篇 ghamisi pedram
  • 3 篇 sim sung-han
  • 3 篇 zreik majd
  • 3 篇 shin do hyoung
  • 3 篇 gloaguen richard
  • 3 篇 maggipinto marco
  • 3 篇 krishnan ram
  • 3 篇 beghi alessandro
  • 3 篇 rodriguez david
  • 3 篇 bak moon soo
  • 3 篇 yu jianbo
  • 3 篇 iqbal muhammad
  • 3 篇 isgum ivana
  • 3 篇 jeong seunghoo
  • 3 篇 bong cheolwoo
  • 3 篇 lee kanghyeok
  • 3 篇 shahi kasra rafi...
  • 3 篇 irfan muhammad
  • 3 篇 viergever max a.

语言

  • 399 篇 英文
  • 13 篇 其他
检索条件"主题词=Convolutional Autoencoder"
412 条 记 录,以下是371-380 订阅
Study of UV Skin Image Generation from an RGB Color Image with Deep Learning for Beauty Industries  35
Study of UV Skin Image Generation from an RGB Color Image wi...
收藏 引用
35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC)
作者: Matsuo, Rui Hasegawa, Makoto Tokyo Denki Univ Dept Engn Adachi Ku 5 Senju Asahi Cho Tokyo 1208551 Japan
Skin visualization for beauty industries using deep learning is discussed. UV skin images were taken by a medical dermoscopy digital camera, and we created datasets for training. Neural networks called U-net and convo... 详细信息
来源: 评论
Performance analysis of neural network topologies and hyperparameters for deep clustering
Performance analysis of neural network topologies and hyperp...
收藏 引用
International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Kucuk, Muhammed Uysal, Ismail Univ S Florida Dept Elect Engn Tampa FL 33620 USA
Deep learning found its initial footing in supervised applications such as image and voice recognition successes of which were followed by deep generative models across similar domains. In recent years, researchers ha... 详细信息
来源: 评论
Channel-Wise Reconstruction-Based Anomaly Detection Framework for Multi-channel Sensor Data
Channel-Wise Reconstruction-Based Anomaly Detection Framewor...
收藏 引用
Intelligent Systems Conference (IntelliSys)
作者: Kwak, Mingu Kim, Seoung Bum Korea Univ 145 Anamro Seoul 02841 South Korea
Anomaly detection is the task of learning patterns of normal data and identifying data with other characteristics. As various types of sensors are attached to vehicle, healthcare equipment, production facilities, etc.... 详细信息
来源: 评论
Region based Single-Stage Interference Mitigation and Target Detection
Region based Single-Stage Interference Mitigation and Target...
收藏 引用
IEEE Radar Conference (RadarConf)
作者: Dubey, Anand Fuchs, Jonas Madhavan, Venkat Luebke, Maximilian Weigel, Robert Lurz, Fabian Friedrich Alexander Univ Erlangen Inst Elect Engn Erlangen Germany
The inherent smaller radar cross sections of vulnerable road users resulting in smaller signal-to-noise-ratios make an accurate detection of them somewhat challenging. Mutual radar interference in typical automotive s... 详细信息
来源: 评论
Learning Local Feature Descriptions in 3D Ultrasound  20
Learning Local Feature Descriptions in 3D Ultrasound
收藏 引用
20th IEEE International Conference on Bioinformatics and Bioengineering (BIBE)
作者: Wulff, Daniel Hagenah, Jannis Ipsen, Svenja Ernst, Floris Univ Lubeck Inst Robot & Cognit Syst Grad Sch Comp Med & Life Sci Lubeck Germany Univ Lubeck Inst Robot & Cognit Syst Lubeck Germany
Tools for automatic image analysis are gaining importance in the clinical workflow, ranging from time-saving tools in diagnostics to real-time methods in image-guided interventions. Over the last years, ultrasound (US... 详细信息
来源: 评论
Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations
收藏 引用
CURRENT BIOLOGY 2021年 第15期31卷 3233-+页
作者: Qiu, Yongrong Zhao, Zhijian Klindt, David Kautzky, Magdalena Szatko, Klaudia P. Schaeffel, Frank Rifai, Katharina Franke, Katrin Busse, Laura Euler, Thomas Univ Tubingen Inst Ophthalm Res D-72076 Tubingen Germany Univ Tubingen Ctr Integrat Neurosci CIN D-72076 Tubingen Germany Univ Tubingen Grad Training Ctr Neurosci GTC Int Max Planck Res Sch D-72076 Tubingen Germany Ludwig Maximilians Univ Munchen Div Neurobiol Fac Biol D-82152 Planegg Martinsried Germany Ludwig Maximilians Univ Munchen Grad Sch Syst Neurosci GSN D-82152 Planegg Martinsried Germany Bernstein Ctr Computat Neurosci D-72076 Tubingen Germany Carl Zeiss Vis Int GmbH D-73430 Aalen Germany Bernstein Ctr Computat Neurosci D-82152 Planegg Martinsried Germany
Pressures for survival make sensory circuits adapted to a species' natural habitat and its behavioral challenges. Thus, to advance our understanding of the visual system, it is essential to consider an animal'... 详细信息
来源: 评论
Real time detection of acoustic anomalies in industrial processes using sequential autoencoders
收藏 引用
EXPERT SYSTEMS 2021年 第1期38卷 e12564-e12564页
作者: Bayram, Baris Duman, Taha Berkay Ince, Gokhan Istanbul Tech Univ Fac Comp & Informat Engn Istanbul Turkey
Development of intelligent systems with the pursuit of detecting abnormal events in real world and in real time is challenging due to difficult environmental conditions, hardware limitations, and computational algorit... 详细信息
来源: 评论
An effective analysis of deep learning based approaches for audio based feature extraction and its visualization
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第17期78卷 23949-23972页
作者: Dhiraj Biswas, Rohit Ghattamaraju, Nischay CSIR Cent Elect Engn Res Inst CEERI Pilani Rajasthan India Birla Inst Technol & Sci Pilani Rajasthan India
Visualizations help decipher latent patterns in music and garner a deep understanding of a song's characteristics. This paper offers a critical analysis of the effectiveness of various state-of-the-art Deep Neural... 详细信息
来源: 评论
Surface defect classification of steels with a new semi-supervised learning method
收藏 引用
OPTICS AND LASERS IN ENGINEERING 2019年 117卷 40-48页
作者: He Di Xu Ke Zhou Peng Zhou Dongdong Univ Sci & Technol Beijing Collaborat Innovat Ctr Steel Technol Xueyuan Rd 30 Beijing 100083 Peoples R China
Defect inspection is extremely crucial to ensure the quality of steel surface. It affects not only the subsequent production, but also the quality of the end-products. However, due to the rare occurrence and appearanc... 详细信息
来源: 评论
DeepVM: A Deep Learning-based approach with automatic feature extraction for 2D input data Virtual Metrology
收藏 引用
JOURNAL OF PROCESS CONTROL 2019年 84卷 24-34页
作者: Maggipinto, Marco Beghi, Alessandro McLoone, Sean Susto, Gian Antonio Univ Padua Dept Informat Engn Padua Italy Univ Padua Human Inspired Technol Res Ctr Padua Italy Queens Univ Belfast Ctr Intelligent Autonomous Mfg Syst Belfast Antrim North Ireland
Industry 4.0 encapsulates methods, technologies, and procedures that transform data into informed decisions and added value in an industrial context. In this regard, technologies such as Virtual Metrology or Soft Sens... 详细信息
来源: 评论