咨询与建议

限定检索结果

文献类型

  • 35,325 篇 会议
  • 20,564 篇 期刊文献
  • 355 篇 学位论文
  • 49 篇 科技报告
  • 3 篇 资讯
  • 2 册 图书

馆藏范围

  • 56,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38,553 篇 工学
    • 25,347 篇 计算机科学与技术...
    • 13,292 篇 电气工程
    • 12,696 篇 信息与通信工程
    • 12,553 篇 软件工程
    • 5,245 篇 生物工程
    • 4,292 篇 生物医学工程(可授...
    • 3,351 篇 控制科学与工程
    • 3,162 篇 光学工程
    • 2,239 篇 仪器科学与技术
    • 1,818 篇 测绘科学与技术
    • 1,646 篇 电子科学与技术(可...
    • 1,414 篇 机械工程
    • 1,224 篇 交通运输工程
    • 1,116 篇 安全科学与工程
    • 862 篇 环境科学与工程(可...
    • 834 篇 材料科学与工程(可...
  • 14,846 篇 理学
    • 6,874 篇 生物学
    • 4,345 篇 物理学
    • 3,221 篇 数学
    • 1,443 篇 地球物理学
    • 1,382 篇 统计学(可授理学、...
    • 1,312 篇 化学
  • 7,219 篇 医学
    • 5,520 篇 临床医学
    • 3,008 篇 基础医学(可授医学...
    • 1,263 篇 药学(可授医学、理...
    • 1,024 篇 公共卫生与预防医...
    • 931 篇 特种医学
  • 4,741 篇 管理学
    • 2,877 篇 管理科学与工程(可...
    • 1,998 篇 图书情报与档案管...
  • 1,229 篇 农学
    • 822 篇 作物学
  • 658 篇 法学
  • 319 篇 经济学
  • 310 篇 教育学
  • 128 篇 文学
  • 71 篇 艺术学
  • 46 篇 军事学
  • 21 篇 历史学
  • 3 篇 哲学

主题

  • 56,298 篇 convolutional ne...
  • 10,845 篇 deep learning
  • 8,361 篇 feature extracti...
  • 6,625 篇 accuracy
  • 5,946 篇 training
  • 3,145 篇 computational mo...
  • 2,665 篇 data models
  • 2,551 篇 machine learning
  • 2,335 篇 convolution
  • 2,299 篇 neural networks
  • 2,099 篇 predictive model...
  • 2,021 篇 transfer learnin...
  • 1,859 篇 task analysis
  • 1,626 篇 real-time system...
  • 1,550 篇 computer archite...
  • 1,514 篇 transformers
  • 1,454 篇 visualization
  • 1,313 篇 image segmentati...
  • 1,208 篇 computer vision
  • 1,146 篇 image classifica...

机构

  • 484 篇 chitkara univers...
  • 140 篇 univ chinese aca...
  • 98 篇 chitkara univers...
  • 90 篇 chitkara centre ...
  • 58 篇 computer science...
  • 56 篇 computer science...
  • 47 篇 centre of resear...
  • 47 篇 chitkara univers...
  • 40 篇 graphic era deem...
  • 39 篇 graphic era deem...
  • 36 篇 computer science...
  • 36 篇 chitkara univers...
  • 36 篇 beijing univ tec...
  • 35 篇 hunan univ coll ...
  • 35 篇 department of co...
  • 34 篇 hong kong polyte...
  • 33 篇 university of sc...
  • 31 篇 graphic era deem...
  • 30 篇 graphic era hill...
  • 30 篇 sichuan univ col...

作者

  • 102 篇 shiva mehta
  • 76 篇 zhang lei
  • 55 篇 li yang
  • 45 篇 wang lei
  • 37 篇 gill kanwarparta...
  • 31 篇 wang jing
  • 30 篇 deepak banerjee
  • 29 篇 zhang tao
  • 29 篇 kukreja vinay
  • 27 篇 li xin
  • 26 篇 yang yi
  • 26 篇 li li
  • 25 篇 liu yang
  • 24 篇 wang hui
  • 23 篇 liu dong
  • 22 篇 sharma neha
  • 22 篇 liu bo
  • 19 篇 rishabh sharma
  • 18 篇 yang bin
  • 18 篇 zhang lin

语言

  • 52,734 篇 英文
  • 3,327 篇 其他
  • 259 篇 中文
  • 71 篇 土耳其文
  • 28 篇 法文
  • 22 篇 俄文
  • 20 篇 德文
  • 17 篇 日文
  • 15 篇 西班牙文
  • 15 篇 斯洛文尼亚文
  • 14 篇 朝鲜文
  • 3 篇 葡萄牙文
  • 2 篇 阿拉伯文
  • 2 篇 意大利文
检索条件"主题词=Convolutional Neural Networks"
56298 条 记 录,以下是41-50 订阅
排序:
Depth from defocus technique with convolutional neural networks for high particle concentrations
收藏 引用
EXPERIMENTS IN FLUIDS 2025年 第1期66卷 1-11页
作者: Xu, Rixin Huang, Zuojie Zhou, Wu Tropea, Cameron Cai, Tianyi Univ Shanghai Sci & Technol Sch Energy & Power Engn Shanghai Peoples R China Shanghai Key Lab Multiphase Flow & Heat Transfer P Shanghai Peoples R China Tech Univ Darmstadt Inst Fluid Mech & Aerodynam Darmstadt Germany
Recent advantages in the depth from defocus technique for the size and location determination of particles in dispersed two-phase flows have enabled the technique to detect and analyze spherical particle images in flo... 详细信息
来源: 评论
Multiperspective Temporal Pooling convolutional neural networks for Fault Diagnosis of Mechanical Transmission Systems
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025年 74卷
作者: Xu, Yadong Li, Sheng Feng, Ke Sun, Beibei Yang, Xiaolong Kou, Linlin Zhao, Zhiheng Huang, George Q. Hong Kong Polytech Univ Dept Ind & Syst Engn Hong Kong Peoples R China Nanjing Forestry Univ Coll Civil Engn Nanjing 210037 Peoples R China Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China Southeast Univ Sch Mech Engn Nanjing 211189 Peoples R China Nanjing Univ Sci & Technol Sch Mech Engn Nanjing 210094 Peoples R China Beijing Mass Transit Railway Operat Corp Ltd Beijing 100044 Peoples R China Hong Kong Polytech Univ Res Inst Adv Mfg Hong Kong Peoples R China Huazhong Univ Sci & Technol State Key Lab Intelligent Mfg Equipment & Technol Wuhan 430072 Peoples R China
The rapid development of convolutional neural networks (CNNs) has significantly contributed to the progress of intelligent fault diagnosis of mechanical transmission systems. Nevertheless, a significant number of prev... 详细信息
来源: 评论
STRUCTURED PRUNING FOR GROUP REGULARIZED convolutional neural networks VIA DYNAMIC REGULARIZATION FACTOR
收藏 引用
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION 2025年 第2期21卷 1440-1455页
作者: Li, Feng Li, Bo Zhu, Meijiao Ma, Junchi Yuan, Jinlong Dalian Maritime Univ Sch Sci Dalian 116026 Liaoning Peoples R China Liaoning Normal Univ Sch Math Dalian 116029 Liaoning Peoples R China
High demand for computation and storage largely hinders the deployment of deep convolutional neural networks (CNNs) in resource constrained devices. Regularization-based pruning methods are effective for the model com... 详细信息
来源: 评论
An interpretable operational state classification framework for elevators through convolutional neural networks
收藏 引用
COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING 2025年
作者: Olaizola, Jon Izagirre, Unai Serradilla, Oscar Zugasti, Ekhi Mendicute, Mikel Aizpurua, Jose I. Mondragon Univ Elect & Comp Dept Gipuzkoa Spain Laboral Kutxa Treasury Gipuzkoa Spain Univ Basque Country UPV EHU Comp Sci & Artificial Intelligence Dept Donostia San Sebastian Gipuzkoa Spain Basque Fdn Sci Ikerbasque Gipuzkoa Spain
Ensuring the safe, reliable, and cost-efficient operation of transportation systems such as elevators is critical for the maintenance of civil infrastructures. The ability to monitor the health state and classify diff... 详细信息
来源: 评论
Deep learning-based stochastic ground motion modeling using generative adversarial and convolutional neural networks
收藏 引用
SOIL DYNAMICS AND EARTHQUAKE ENGINEERING 2025年 194卷
作者: Masoudifar, Mohsen Mahsuli, Mojtaba Taciroglu, Ertugrul Sharif Univ Technol Ctr Infrastruct Sustainabil & Resilience Res Dept Civil Engn Tehran Iran Univ Calif Los Angeles Dept Civil & Environm Engn Los Angeles CA USA
This paper proposes a probabilistic framework for generating three-dimensional (3D) synthetic ground motions using deep learning techniques-specifically, generative adversarial networks (GAN) and convolutional neural ... 详细信息
来源: 评论
HARDCORE: H-Field and Power Loss Estimation for Arbitrary Waveforms With Residual, Dilated convolutional neural networks in Ferrite Cores
收藏 引用
IEEE TRANSACTIONS ON POWER ELECTRONICS 2025年 第2期40卷 3326-3335页
作者: Kirchgaessner, Wilhelm Foerster, Nikolas Piepenbrock, Till Schweins, Oliver Wallscheid, Oliver Paderborn Univ Dept Power Elect & Elect Drives D-33095 Paderborn Germany Univ Siegen Chair Interconnected Automat Syst D-57076 Siegen Germany
The MagNet challenge 2023 called upon competitors to develop data-driven models for the material-specific, waveform-agnostic estimation of steady-state power losses in toroidal ferrite cores. The following HARDCORE (H... 详细信息
来源: 评论
Improving multi-talker binaural DOA estimation by combining periodicity and spatial features in convolutional neural networks
收藏 引用
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING 2025年 第1期2025卷 1-18页
作者: Varzandeh, Reza Doclo, Simon Hohmann, Volker Carl von Ossietzky Univ Oldenburg Dept Med Phys & Acoust D-26111 Oldenburg Germany Carl von Ossietzky Univ Oldenburg Cluster Excellence Hearing4all D-26111 Oldenburg Germany
Deep neural network-based direction of arrival (DOA) estimation systems often rely on spatial features as input to learn a mapping for estimating the DOA of multiple talkers. Aiming to improve the accuracy of multi-ta... 详细信息
来源: 评论
Improve the interpretability of convolutional neural networks with probability density function
收藏 引用
INFORMATION SCIENCES 2025年 699卷
作者: Chen, Yueqi Pan, Tingting Yang, Jie Dalian Univ Technol Sch Math Sci Dalian 116024 Liaoning Peoples R China Key Lab Computat Math & Data Intelligence Liaoning Dalian 116024 Liaoning Peoples R China Dalian Polytech Univ Dept Basic Courses Teaching Dalian 116034 Peoples R China
Currently, convolutional neural networks (CNNs) have demonstrated extensive success in numerous practical applications. Nevertheless, their limited interpretability remains a significant barrier to further advancement... 详细信息
来源: 评论
Fault diagnosis method for chemical processes based on variable correlation-guided convolutional neural networks
收藏 引用
CANADIAN JOURNAL OF CHEMICAL ENGINEERING 2025年
作者: Zhou, Zhe Yu, Hongwei Yang, Li Li, Zuxin Wen, Chenglin Huzhou Univ Sch Engn Huzhou Zhejiang Peoples R China Huzhou Univ Huzhou Key Lab Intelligent Sensing & Optimal Contr Huzhou Zhejiang Peoples R China Zhejiang Key Lab Ind Solid Waste Thermal Hydrolysi Huzhou Zhejiang Peoples R China Huzhou Coll Sch Intelligent Mfg Huzhou Zhejiang Peoples R China Guangdong Univ Petrochem Technol Sch Automat Maoming Guangdong Peoples R China
convolutional neural networks (CNNs) have been widely applied in chemical process fault diagnosis due to their superior feature extraction capabilities. However, the inherent complexity and variability of chemical env... 详细信息
来源: 评论
Identification of Vaca Muerta shale microlithofacies using convolutional neural networks with characterization by electron microscopy
GAS SCIENCE AND ENGINEERING
收藏 引用
GAS SCIENCE AND ENGINEERING 2025年 134卷
作者: Froute, Laura Nazarova, Marfa Jolivet, Isabelle C. Creux, Patrice Chaput, Eric Kovscek, Anthony R. Stanford Univ Dept Energy Sci & Engn Stanford CA 94305 USA Univ Pau & Pays Adour E2S UPPA LFCR F-64000 Pau France TotalEnergies SE One Tech Geosci & Reservoir F-64000 Pau France
Identifying sedimentary lithofacies, including their characteristics and distribution, is a common method to describe geological heterogeneity. Characterizing microlithofacies within shale fabric requires the integrat... 详细信息
来源: 评论