咨询与建议

限定检索结果

文献类型

  • 12 篇 会议
  • 5 篇 期刊文献

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 12 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 3 篇 仪器科学与技术
    • 2 篇 信息与通信工程
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 石油与天然气工程
  • 5 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 17 篇 convolutional re...
  • 2 篇 spiking neural n...
  • 2 篇 articulation dis...
  • 2 篇 deep learning
  • 2 篇 quadruples-like ...
  • 2 篇 bottleneck featu...
  • 2 篇 convolutional de...
  • 2 篇 feature extracti...
  • 2 篇 hybrid deep lear...
  • 2 篇 skeletal motion ...
  • 2 篇 convolutional ne...
  • 1 篇 gender classific...
  • 1 篇 fault diagnosis
  • 1 篇 hybrid neural ne...
  • 1 篇 self-taught lear...
  • 1 篇 multifocus image...
  • 1 篇 accent
  • 1 篇 pretraining
  • 1 篇 pre-training
  • 1 篇 homogeneity

机构

  • 2 篇 huaqiao univ xia...
  • 1 篇 huaqiao univ col...
  • 1 篇 wright state uni...
  • 1 篇 kobe univ org ad...
  • 1 篇 china yangtze ri...
  • 1 篇 indian inst sci ...
  • 1 篇 northwestern pol...
  • 1 篇 da iict gandhina...
  • 1 篇 kobe univ grad s...
  • 1 篇 wuyi univ sch in...
  • 1 篇 xihua univ key l...
  • 1 篇 microsoft res re...
  • 1 篇 xi an jiao tong ...
  • 1 篇 quintary ai paph...
  • 1 篇 xi an jiao tong ...
  • 1 篇 czestochowa tech...
  • 1 篇 univ tokyo
  • 1 篇 univ social sci ...
  • 1 篇 fzi res ctr info...
  • 1 篇 wuhan univ sch p...

作者

  • 2 篇 liu xin
  • 1 篇 peng shu-juan
  • 1 篇 rutkowski leszek
  • 1 篇 liu dong
  • 1 篇 wang hongmei
  • 1 篇 peng shujuan
  • 1 篇 sailor hardik b.
  • 1 篇 dang jianwu
  • 1 篇 takiguchi tetsuy...
  • 1 篇 yu qiang
  • 1 篇 xu guanghua
  • 1 篇 yao yanli
  • 1 篇 jaworski maciej
  • 1 篇 zhai hao
  • 1 篇 xiao zhihuai
  • 1 篇 hu wenqing
  • 1 篇 zhang liang-yu
  • 1 篇 nakashika toru
  • 1 篇 zimmerer david
  • 1 篇 wang longbiao

语言

  • 16 篇 英文
  • 1 篇 其他
检索条件"主题词=Convolutional Restricted Boltzmann Machine"
17 条 记 录,以下是1-10 订阅
排序:
An integrated system for robust gender classification with convolutional restricted boltzmann machine and spiking neural network
An integrated system for robust gender classification with c...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Yao, Yanli Yu, Qiang Wang, Longbiao Dang, Jianwu Tianjin Univ Sch Comp Sci & Technol Tianjin Key Lab Cognit Comp & Applicat Tianjin Peoples R China
Different from traditional artificial neural networks (ANNs), spiking neural networks (SNNs) represent and transfer information in spikes, which are considered more like human brain. SNNs contain time information, whi... 详细信息
来源: 评论
FACIAL BEAUTY PREDICTION MODEL BASED ON SELF-TAUGHT LEARNING AND convolutional restricted boltzmann machine  13
FACIAL BEAUTY PREDICTION MODEL BASED ON SELF-TAUGHT LEARNING...
收藏 引用
International Conference on machine Learning and Cybernetics
作者: Gan, Junying Li, Lichen Zhai, Yikui Wuyi Univ Sch Informat & Engn Jiangmen 529020 Guangdong Peoples R China
The research of facial beauty mostly focuses on geometric features, which may easily lose much feature information characterizing facial beauty and rely heavily on the accurate manual localization of landmark facial f... 详细信息
来源: 评论
Fault identification of hydropower unit based on time-frequency feature map of vibration signals and Convrbm-ResNet
收藏 引用
MEASUREMENT SCIENCE AND TECHNOLOGY 2025年 第1期36卷 016121-016121页
作者: Chen, Tingxi Chen, Jinbao Zou, Yidong Liu, Dong Hu, Wenqing Zheng, Yang Xiao, Zhihuai Wuhan Univ Sch Power & Mech Engn Wuhan 430072 Peoples R China China Yangtze River Elect Power Co Ltd Wuhan 430000 Hubei Peoples R China Xihua Univ Key Lab Fluid & Power Machinery Minist Educ Chengdu 610039 Peoples R China
To address the significant impact of the non-stationarity and nonlinearity of vibration signals on the accuracy of fault identification in hydropower units, a method for condition identification based on time-frequenc... 详细信息
来源: 评论
Monitoring of Changes in Data Stream Distribution Using convolutional restricted boltzmann machines  20th
Monitoring of Changes in Data Stream Distribution Using Conv...
收藏 引用
20th International Conference on Artificial Intelligence and Soft Computing (ICAISC)
作者: Jaworski, Maciej Rutkowski, Leszek Staszewski, Pawel Najgebauer, Patryk Cracow Univ Technol Dept Comp Sci Krakow Poland Czestochowa Tech Univ Dept Computat Intelligence Czestochowa Poland Univ Social Sci Inst Informat Technol Lodz Poland
In this paper, we propose the convolutional restricted boltzmann machine (CRBM) as a tool for detecting concept drift in time-varying data streams. Recently, it was demonstrated that the restricted boltzmann machine (... 详细信息
来源: 评论
Unsupervised Pre-Training of Deep Neural Classifiers  12
Unsupervised Pre-Training of Deep Neural Classifiers
收藏 引用
12th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications, IDAACS 2023
作者: Kroshchanka, Aliaksandr Golovko, Vladimir Peiwen, Shi Lubanska, Zofia Quintary Ai Paphos8011 Cyprus John Paul Ii University in Biala-Podlaska Biala-Podlaska21-500 Poland Jilin International Studies University Changchun City130117 China
The paper is devoted to studying the issues of pre-training of deep neural network models. A generalized approach for pre-training deep models is proposed, which allows achieving better performance in final accuracy a... 详细信息
来源: 评论
Image recognition based on improved convolutional deep belief network model
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2021年 第2期80卷 2031-2045页
作者: Wang, Hongmei Liu, Pengzhong Northwestern Polytech Univ Sch Astronaut Xian Peoples R China Northwestern Polytech Univ Natl Key Lab Aerosp Flight Dynam Xian Peoples R China
Aiming at the homogeneity of convolution kernels in convolutional Deep Belief Network (CDBN), a cross-entropy-based sparse penalty mechanism suitable for convolutional restricted boltzmann machine (CRBM) model is intr... 详细信息
来源: 评论
Multifocus Image Fusion Method Based on convolutional Deep Belief Network
收藏 引用
IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING 2021年 第1期16卷 85-97页
作者: Zhai, Hao Zhuang, Yi Nanjing Univ Aeronaut & Astronaut Coll Comp Sci & Technol Nanjing 211106 Peoples R China
Multifocus image fusion is a technique that can integrate the focus information of different source images into a single composite image. At present, most fusion methods still suffer from problems such as block artifa... 详细信息
来源: 评论
Flexible human motion transition via hybrid deep neural network and quadruple-like structure learning
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING 2021年 第2期24卷 136-146页
作者: Peng, Shu-Juan Zhang, Liang-Yu Liu, Xin Huaqiao Univ Coll Comp Sci & Technol Xiamen 361021 Peoples R China Huaqiao Univ Xiamen Key Lab Comp Vis & Pattern Recognit Xiamen 361021 Peoples R China Huaqiao Univ Fujian Key Lab Big Data Intelligence & Secur Xiamen 361021 Peoples R China
Skeletal motion transition is of crucial importance to the animation creation. In this paper, we propose a hybrid deep learning framework that allows for efficient human motion transition. First, we integrate a convol... 详细信息
来源: 评论
Detection of weak transient signals based on unsupervised learning for bearing fault diagnosis
收藏 引用
NEUROCOMPUTING 2018年 314卷 445-457页
作者: Chen, Longting Xu, Guanghua Wang, Yi Wang, Jianhua Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Shaanxi Peoples R China Xi An Jiao Tong Univ State Key Lab Mfg Syst Engn Xian 710049 Shaanxi Peoples R China
Transient impulse contains abundant information of bearings status. When fault occurs, it is activated and would recur periodically or quasi-periodically. Its period can indicate where defects lie in. However, transie... 详细信息
来源: 评论
Spiking convolutional Deep Belief Networks  26th
Spiking Convolutional Deep Belief Networks
收藏 引用
26th International Conference on Artificial Neural Networks (ICANN)
作者: Kaiser, Jacques Zimmerer, David Tieck, J. Camilo Vasquez Ulbrich, Stefan Roennau, Arne Dillmann, Ruediger FZI Res Ctr Informat Technol D-76131 Karlsruhe Germany
Understanding visual input as perceived by humans is a challenging task for machines. Today, most successful methods work by learning features from static images. Based on classical artificial neural networks, those m... 详细信息
来源: 评论