咨询与建议

限定检索结果

文献类型

  • 84 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 168 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 156 篇 工学
    • 93 篇 电气工程
    • 74 篇 计算机科学与技术...
    • 21 篇 信息与通信工程
    • 18 篇 软件工程
    • 11 篇 生物医学工程(可授...
    • 9 篇 仪器科学与技术
    • 9 篇 控制科学与工程
    • 7 篇 机械工程
    • 7 篇 电子科学与技术(可...
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 41 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 168 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou
  • 2 篇 mandal manas k.

语言

  • 165 篇 英文
  • 3 篇 其他
检索条件"主题词=Convolutional Sparse Coding"
168 条 记 录,以下是31-40 订阅
排序:
Revisiting convolutional sparse coding for Image Denoising: From a Multi-Scale Perspective
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2022年 29卷 1202-1206页
作者: Xu, Jingyi Deng, Xin Xu, Mai Beihang Univ Sch Cyber Sci & Technol Beijing 100190 Peoples R China Beihang Univ Dept Elect Informat Engn Beijing 100190 Peoples R China
Recently, convolutional sparse coding (CSC) has shown great success in many image processing tasks, such as image super-resolution and image separation. However, it performs poorly in image denoising task. In this let... 详细信息
来源: 评论
Unsupervised Transfer Learning via Multi-Scale convolutional sparse coding for Biomedical Applications
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2018年 第5期40卷 1182-1194页
作者: Chang, Hang Han, Ju Zhong, Cheng Snijders, Antoine M. Mao, Jian-Hua Lawrence Berkeley Natl Lab Berkeley Biomed Data Sci Ctr Biol Syst & Engn Div Berkeley CA 94720 USA
The capabilities of (I) learning transferable knowledge across domains;and (II) fine-tuning the pre-learned base knowledge towards tasks with considerably smaller data scale are extremely important. Many of the existi... 详细信息
来源: 评论
Image Reconstruction via Manifold Constrained convolutional sparse coding for Image Sets
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2017年 第7期11卷 1072-1081页
作者: Yang, Linlin Li, Ce Han, Jungong Chen, Chen Ye, Qixiang Zhang, Baochang Cao, Xianbin Liu, Wanquan Beihang Univ Dept Automat Sci & Elect Engn Beijing 100191 Peoples R China China Univ Min & Technol Beijing 100083 Peoples R China Univ Lancaster Sch Comp & Commun Lancaster LA1 4WA England Univ Chinese Acad Sci Beijing 100049 Peoples R China Univ Cent Florida Orlando FL 32816 USA Beihang Univ Sch Elect & Informat Engn Beijing 100191 Peoples R China Curtin Univ Perth WA 6845 Australia
Convolution sparse coding (CSC) has attracted much attention recently due to its advantages in image reconstruction and enhancement. However, the coding process suffers from perturbations caused by variations of input... 详细信息
来源: 评论
Image classification via convolutional sparse coding
收藏 引用
VISUAL COMPUTER 2023年 第5期39卷 1731-1744页
作者: Nozaripour, Ali Soltanizadeh, Hadi Semnan Univ Dept Elect Comp Engn Semnan *** Iran Semnan Univ Fac Elect Comp Engn Semnan *** Iran
The convolutional sparse coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all i... 详细信息
来源: 评论
Context-Dependent Piano Music Transcription With convolutional sparse coding
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2016年 第12期24卷 2218-2230页
作者: Cogliati, Andrea Duan, Zhiyao Wohlberg, Brendt Univ Rochester Dept Elect & Comp Engn 601 Elmwood Ave Rochester NY 14627 USA Los Alamos Natl Lab Div Theoret Los Alamos NM 87545 USA
This paper presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of pi... 详细信息
来源: 评论
Generalized convolutional sparse coding With Unknown Noise
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2020年 29卷 5386-5395页
作者: Wang, Yaqing Kwok, James T. Ni, Lionel M. Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China Baidu Res Business Intelligence Lab Beijing 100085 Peoples R China Natl Engn Lab Deep Learning Technol & Applicat Beijing 100085 Peoples R China
convolutional sparse coding (CSC) can learn representative shift-invariant patterns from data. However, existing CSC methods assume the Gaussian noise, which can be restrictive in some challenging applications. In thi... 详细信息
来源: 评论
Working Locally Thinking Globally: Theoretical Guarantees for convolutional sparse coding
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2017年 第21期65卷 5687-5701页
作者: Papyan, Vardan Sulam, Jeremias Elad, Michael Technion Israel Inst Technol Dept Comp Sci IL-3200003 Haifa Israel
The celebrated sparse representation model has led to remarkable results in various signal processing tasks in the last decade. However, despite its initial purpose of serving as a global prior for entire signals, it ... 详细信息
来源: 评论
Interpretable Multi-Modal Image Registration Network Based on Disentangled convolutional sparse coding
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 1078-1091页
作者: Deng, Xin Liu, Enpeng Li, Shengxi Duan, Yiping Xu, Mai Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China Beihang Univ Sch Elect & Informat Engn Beijing 100191 Peoples R China Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
Multi-modal image registration aims to spatially align two images from different modalities to make their feature points match with each other. Captured by different sensors, the images from different modalities often... 详细信息
来源: 评论
Penalized-Likelihood PET Image Reconstruction Using 3D Structural convolutional sparse coding
收藏 引用
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2022年 第1期69卷 4-14页
作者: Xie, Nuobei Gong, Kuang Guo, Ning Qin, Zhixing Wu, Zhifang Liu, Huafeng Li, Quanzheng Zhejiang Univ Coll Opt Sci & Engn State Key Lab Modern Opt Instrumentat Hangzhou 310000 Peoples R China Massachusetts Gen Hosp Dept Radiol Boston MA 02114 USA Harvard Med Sch Boston MA 02114 USA Shanxi Med Univ Hosp 1 Dept Nucl Med Taiyuan Shanxi Peoples R China
Positron emission tomography (PET) is widely used for clinical diagnosis. As PET suffers from low resolution and high noise, numerous efforts try to incorporate anatomical priors into PET image reconstruction, especia... 详细信息
来源: 评论
Variations on the convolutional sparse coding Model
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 第0期68卷 519-528页
作者: Rey-Otero, Ives Sulam, Jeremias Elad, Michael Technion Israel Inst Technol Dept Comp Sci IL-32000 Haifa Israel
Over the past decade, the celebrated sparse representation model has achieved impressive results in various signal and image processing tasks. A convolutional version of this model, termed convolutional sparse coding ... 详细信息
来源: 评论