咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 4 篇 电气工程
    • 4 篇 计算机科学与技术...
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 5 篇 convolutional ne...
  • 3 篇 deep learning
  • 3 篇 feature extracti...
  • 2 篇 convolutional ne...
  • 2 篇 accuracy
  • 1 篇 ear occlusions
  • 1 篇 data visualisati...
  • 1 篇 softmax loss
  • 1 篇 reliability
  • 1 篇 edge coordinates
  • 1 篇 weight factors
  • 1 篇 readability metr...
  • 1 篇 biomedical mri
  • 1 篇 training data
  • 1 篇 feedforward neur...
  • 1 篇 ear feature repr...
  • 1 篇 multilevel featu...
  • 1 篇 image edge detec...
  • 1 篇 classification m...
  • 1 篇 ase-cnn

机构

  • 1 篇 hong kong univ s...
  • 1 篇 hong kong univ s...
  • 1 篇 hong kong univ s...
  • 1 篇 luoyang inst sci...
  • 1 篇 blackrock financ...
  • 1 篇 xian musheng ele...
  • 1 篇 inner mongolia u...
  • 1 篇 univ sci & techn...
  • 1 篇 kn toosi univ te...
  • 1 篇 hong kong univ s...
  • 1 篇 islamic azad uni...

作者

  • 1 篇 liu shuang
  • 1 篇 lei xuemei
  • 1 篇 li zheng
  • 1 篇 wadhwa sahil
  • 1 篇 yang weichao
  • 1 篇 yu chen
  • 1 篇 puri abishek
  • 1 篇 teshnehlab moham...
  • 1 篇 mu zhichun
  • 1 篇 zhang yi
  • 1 篇 qu huamin
  • 1 篇 haleem hammad
  • 1 篇 wang yong
  • 1 篇 siar masoumeh
  • 1 篇 yuan li

语言

  • 5 篇 英文
检索条件"主题词=Convolutional neural network architecture"
5 条 记 录,以下是1-10 订阅
排序:
Precise Recognition and Feature Depth Analysis of Tennis Training Actions Based on Multimodal Data Integration and Key Action Classification
收藏 引用
IEEE ACCESS 2025年 13卷 25409-25418页
作者: Yang, Weichao Luoyang Inst Sci & Technol Dept Phys Educ Luoyang 471023 Peoples R China
To address the issues of accuracy and generalization in action recognition within complex tennis training scenarios, this study proposes an Adaptive Semantic-Enhanced convolutional neural network (ASE-CNN) model. The ... 详细信息
来源: 评论
A combination of feature extraction methods and deep learning for brain tumour classification
收藏 引用
IET IMAGE PROCESSING 2022年 第2期16卷 416-441页
作者: Siar, Masoumeh Teshnehlab, Mohammad Islamic Azad Univ Dept Comp Engn Sci & Res Branch Tehran Iran KN Toosi Univ Technol Fac Elect & Comp Engn Tehran Iran
This paper presents a method for categorizing tumour disease from magnetic resonance imaging images using a convolutional neural network. The proposed technique consists of three major phases, including feature extrac... 详细信息
来源: 评论
A lightweight deep learning model for cattle face recognition
收藏 引用
COMPUTERS AND ELECTRONICS IN AGRICULTURE 2022年 195卷
作者: Li, Zheng Lei, Xuemei Liu, Shuang Inner Mongolia Univ Sch Elect Informat Engn Hohhot 010020 Inner Mongolia Peoples R China
At present, there have been some researches on deep neural networks used in the field of biometrics to solve the problem of cattle identity authentication, particularly facial recognition under non-invasive methods. H... 详细信息
来源: 评论
Evaluating the Readability of Force Directed Graph Layouts: A Deep Learning Approach
收藏 引用
IEEE COMPUTER GRAPHICS AND APPLICATIONS 2019年 第4期39卷 40-53页
作者: Haleem, Hammad Wang, Yong Puri, Abishek Wadhwa, Sahil Qu, Huamin Hong Kong Univ Sci & Technol Hong Kong Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China Hong Kong Univ Sci & Technol Comp Sci Hong Kong Peoples R China Blackrock Financial Modelling Grp Gurgaon India Hong Kong Univ Sci & Technol Dept Comp Sci & Engn CSE Hong Kong Peoples R China
Existing graph layout algorithms are usually not able to optimize all the aesthetic properties desired in a graph layout. To evaluate howwell the desired visual features are reflected in a graph layout, many readabili... 详细信息
来源: 评论
Ear verification under uncontrolled conditions with convolutional neural networks
收藏 引用
IET BIOMETRICS 2018年 第3期7卷 185-198页
作者: Zhang, Yi Mu, Zhichun Yuan, Li Yu, Chen Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing Peoples R China Xian Musheng Elect Technol Co Ltd Xian Shaanxi Peoples R China
The capabilities of biometric systems have recently made extraordinary leaps by the emergence of deep learning. However, due to the lack of enough training data, the applications of the deep neural network in the ear ... 详细信息
来源: 评论