咨询与建议

限定检索结果

文献类型

  • 86 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 170 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 160 篇 工学
    • 96 篇 电气工程
    • 77 篇 计算机科学与技术...
    • 23 篇 信息与通信工程
    • 20 篇 软件工程
    • 11 篇 控制科学与工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 41 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 170 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 zhang yi
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou

语言

  • 167 篇 英文
  • 3 篇 其他
检索条件"主题词=Convolutional sparse coding"
170 条 记 录,以下是121-130 订阅
Single Image Deraining With Continuous Rain Density Estimation
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2023年 25卷 443-456页
作者: Yu, Lei Wang, Bishan He, Jingwei Xia, Gui-Song Yang, Wen Wuhan Univ Sch Elect Informat Wuhan 430072 Peoples R China Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
Single image deraining (SIDR) often suffers from over/under deraining due to the nonuniformity of rain densities and the variety of raindrop scales. In this paper, we propose a continuous density-guided network (CODE-... 详细信息
来源: 评论
Multi-modal Image Super-Resolution via Deep convolutional Transform Learning  32
Multi-modal Image Super-Resolution via Deep Convolutional Tr...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Kumar, Kriti Majumdar, Angshul Kumar, A. Anil Chandra, M. Girish TCS Res Pune Maharashtra India IIIT Delhi New Delhi India TCG CREST Inst Adv Intelligence Kolkata India
Real-world situations often involve processing data from diverse imaging modalities like Multispectral (MS), Near Infrared (NIR), and RGB, each capturing different aspects of the same scene. These modalities often var... 详细信息
来源: 评论
Slice-based Approximate Online convolutional Dictionary Learning via Convergent Accelerated Inertial Algorithm  2
Slice-based Approximate Online Convolutional Dictionary Lear...
收藏 引用
2nd International Workshop on Methodologies for Multimedia (Meet4MM)
作者: Zhao, Yanjuan Deng, Zhiyuan Yin, Yi Wang, Jinjia Yanshan Univ Qinhuangdao Hebei Peoples R China Xidian Univ Xian Peoples R China Kunming Shipborne Equipment Res & Test Ctr Kunming Yunnan Peoples R China
convolutional dictionary learning (CDL) is a widely used technique in computer vision for accurately capturing local features and texture information in signals. However, most existing CDL methods are based on batch p... 详细信息
来源: 评论
Multi-Modal convolutional Dictionary Learning
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 1325-1339页
作者: Gao, Fangyuan Deng, Xin Xu, Mai Xu, Jingyi Dragotti, Pier Luigi Beihang Univ Sch Cyber Sci & Technol Beijing 100191 Peoples R China Beihang Univ Dept Elect Informat Engn Beijing 100191 Peoples R China Imperial Coll London Dept Elect & Elect Engn London SW7 2AZ England
convolutional dictionary learning has become increasingly popular in signal and image processing for its ability to overcome the limitations of traditional patch-based dictionary learning. Although most studies on con... 详细信息
来源: 评论
Tensor convolutional Dictionary Learning With CP Low-Rank Activations
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2022年 70卷 785-796页
作者: Humbert, Pierre Oudre, Laurent Vayatis, Nicolas Audiffren, Julien Univ Paris Saclay ENS Paris Saclay CNRS Ctr Borelli F-91190 Gif Sur Yvette France Univ Fribourg Cognit & Percept Lab CH-1700 Fribourg Switzerland
In this paper, we propose to extend the standard convolutional Dictionary Learning problem to a tensor representation where the activations are constrained to be "low-rank" through a Canonical Polyadic decom... 详细信息
来源: 评论
Quantifying Dynamic Signal Spread in Real-Time High-Energy X-ray Diffraction
收藏 引用
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION 2022年 第4期11卷 568-586页
作者: Banco, Daniel P. Miller, Eric Beaudoin, Armand Miller, Matthew P. Chatterjee, Kamalika Tufts Univ Dept Elect & Comp Engn 161 Coll Ave Medford MA 02155 USA Univ Illinois Dept Mech Sci & Engn Champaign IL 61820 USA Cornell Univ Cornell High Energy Synchrotron Source Chess Ithaca NY 14853 USA Cornell Univ Sibley Sch Mech & Aerosp Engn Cornell High Energy Synchrotron Source CHESS Ithaca NY 14853 USA
Measured intensity in high-energy monochromatic X-ray diffraction (HEXD) experiments provides information regarding the microstructure of the crystalline material under study. The location of intensity on an areal det... 详细信息
来源: 评论
Learning Multiscale convolutional Dictionaries for Image Reconstruction
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2022年 8卷 425-437页
作者: Liu, Tianlin Chaman, Anadi Belius, David Dokmanic, Ivan Univ Basel Dept Math & Comp Sci CH-4001 Basel Switzerland Univ Illinois Dept Elect Comp Engn Urbana IL 61801 USA
convolutional neural networks (CNNs) have been tremendously successful in solving imaging inverse problems. To understand their success, an effective strategy is to construct simpler and mathematically more tractable ... 详细信息
来源: 评论
Wideband DOA Estimation with Magnitude-Only Measurements  56
Wideband DOA Estimation with Magnitude-Only Measurements
收藏 引用
56th IEEE International Symposium on Circuits and Systems (ISCAS)
作者: Wan, Zhengyu Liu, Wei Univ Sheffield Dept Elect & Elect Engn Sheffield S Yorkshire England
The problem of non-coherent direction of arrival (DOA) estimation of wideband signals with magnitude-only measurements is studied in this paper. Unlike the traditional coherent DOA estimation methods, where discrete F... 详细信息
来源: 评论
A Deep Unfolding Network for Multispectral and Hyperspectral Image Fusion
收藏 引用
REMOTE SENSING 2024年 第21期16卷 3979页
作者: Zhang, Bihui Cao, Xiangyong Meng, Deyu Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China Xi An Jiao Tong Univ Minist Educ Key Lab Intelligent Networks & Network Secur Xian 710049 Peoples R China Xi'an Jiaotong Univ Sch Comp Sci & Technol Xian 710049 Peoples R China Peng Cheng Lab Shenzhen 518066 Peoples R China Macau Univ Sci & Technol Macau Inst Syst Engn Taipa 999078 Macau Peoples R China
Multispectral and hyperspectral image fusion (MS/HS fusion) aims to generate a high-resolution hyperspectral (HRHS) image by fusing a high-resolution multispectral (HRMS) and a low-resolution hyperspectral (LRHS) imag... 详细信息
来源: 评论
SPATIAL-SPECTRAL convolutional sparse NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYP...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Xiong, Fengchao Ye, Minchao Zhou, Jun Qian, Yuntao Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China China Jiliang Univ Coll Informat Engn Hangzhou Peoples R China Griffith Univ Sch Informat & Commun Technol Nathan Qld Australia Zhejiang Univ Coll Comp Sci Hangzhou Peoples R China
sparse representation (SR) is a widely accepted hyperspectral image (HSI) denoising model. Because of the curse of dimensionality and the desire to better fit the data, the SR models are typically deployed on small an... 详细信息
来源: 评论