咨询与建议

限定检索结果

文献类型

  • 85 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 169 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 159 篇 工学
    • 96 篇 电气工程
    • 76 篇 计算机科学与技术...
    • 23 篇 信息与通信工程
    • 20 篇 软件工程
    • 11 篇 控制科学与工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 仪器科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 机械工程
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 42 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 化学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 169 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou
  • 2 篇 mandal manas k.

语言

  • 166 篇 英文
  • 3 篇 其他
检索条件"主题词=Convolutional sparse coding"
169 条 记 录,以下是131-140 订阅
排序:
Factorized Tensor Dictionary Learning for Visual Tensor Data Completion
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2021年 23卷 1225-1238页
作者: Xu, Ruotao Xu, Yong Quan, Yuhui South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Commun & Comp Network Lab Guangdong Guangzhou 510006 Peoples R China Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China
This paper aims at developing a dictionary-learning-based method for completing the visual tensor data with missing elements. Traditional dictionary learning approaches suffer from very high computational costs when p... 详细信息
来源: 评论
A method of reconstructing compressive spectral imaging with a complementary prior constraint
收藏 引用
OPTICS COMMUNICATIONS 2024年 550卷
作者: Wang, Pan Li, Jie Qi, Chun Wang, Lin Xi An Jiao Tong Univ Fac Elect & Informat Engn Sch Informat & Commun Engn Xian 710049 Peoples R China
Compressed spectral imaging (CSI) is a technique for acquiring a cube of spectral image data in a single snapshot. In this paper, we propose a reconstruction method for the CSI system that integrates complementary pri... 详细信息
来源: 评论
A Novel Interpretable Model via Algorithm Unrolling for Intelligent Fault Diagnosis of Machinery
收藏 引用
IEEE SENSORS JOURNAL 2024年 第1期24卷 495-505页
作者: Rao, Fengpei Zeng, Ming Cheng, Yiwei China Univ Geosci Sch Mech Engn & Elect Informat Wuhan 430074 Peoples R China China Univ Geosci Shenzhen Res Inst Shenzhen 518057 Peoples R China
Identifying the health state of machinery using sensor information is one of the key tasks for intelligent operation and maintenance of machinery. In recent years, deep learning models have been widely used in this fi... 详细信息
来源: 评论
convolutional sparse Coded Dynamic Brain Functional Connectivity
收藏 引用
NEURAL PROCESSING LETTERS 2020年 第3期52卷 1881-1892页
作者: Yan, Jin Zhu, Yingying Univ Texas Arlington Arlington TX 76019 USA
Functional brain network has been widely studied in many previous work for brain disorder diagnosis and brain network analysis. However, most previous work focus on static dynamic brain network research. Lots of recen... 详细信息
来源: 评论
Online Rain/Snow Removal From Surveillance Videos
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 2029-2044页
作者: Li, Minghan Cao, Xiangyong Zhao, Qian Zhang, Lei Meng, Deyu Hong Kong Polytech Univ Dept Comp Hong Kong Peoples R China Xi An Jiao Tong Univ Sch Math & Stat Xian 710049 Peoples R China Xi An Jiao Tong Univ Key Lab Intelligent Networks & Network Secur Minist Educ Xian 710049 Peoples R China Macau Univ Sci & Technol Fac Informat Technol Taipa Macau Peoples R China
Video rain/snow removal from surveillance videos is an important task in the computer vision community since rain/snow existed in videos can severely degenerate the performance of many surveillance system. Various met... 详细信息
来源: 评论
Learning Separable Filters
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2015年 第1期37卷 94-106页
作者: Sironi, Amos Tekin, Bugra Rigamonti, Roberto Lepetit, Vincent Fua, Pascal Ecole Polytech Fed Lausanne IC Fac Comp Vis Lab CH-1015 Lausanne Switzerland Graz Univ Technol Inst Comp Graph & Vis A-8010 Graz Austria
Learning filters to produce sparse image representations in terms of overcomplete dictionaries has emerged as a powerful way to create image features for many different purposes. Unfortunately, these filters are usual... 详细信息
来源: 评论
Adaptive ADMM for Dictionary Learning in convolutional sparse Representation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2019年 第7期28卷 3408-3422页
作者: Peng, Guan-Ju Natl Chung Hsing Univ Dept Appl Math Taichung 402 Taiwan
In this paper, we propose a novel approach to convolutional sparse representation with the aim of resolving the dictionary learning problem. The proposed method, referred to as the adaptive alternating direction metho... 详细信息
来源: 评论
EFFICIENT SEPARABLE FILTER ESTIMATION USING RANK-1 convolutional DICTIONARY LEARNING  28
EFFICIENT SEPARABLE FILTER ESTIMATION USING RANK-1 CONVOLUTI...
收藏 引用
IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
作者: Silva, Gustavo Quesada, Jorge Rodriguez, Paul Pontificia Univ Catolica Peru Elect Engn Dept Lima Peru
Natively learned separable filters for convolutional sparse coding (CSC) have recently been shown to provide equivalent reconstruction performance to their non-separable counterparts (as opposed to approximated separa... 详细信息
来源: 评论
Multi-modal Image Super-Resolution via Deep convolutional Transform Learning  32
Multi-modal Image Super-Resolution via Deep Convolutional Tr...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Kumar, Kriti Majumdar, Angshul Kumar, A. Anil Chandra, M. Girish TCS Res Pune Maharashtra India IIIT Delhi New Delhi India TCG CREST Inst Adv Intelligence Kolkata India
Real-world situations often involve processing data from diverse imaging modalities like Multispectral (MS), Near Infrared (NIR), and RGB, each capturing different aspects of the same scene. These modalities often var... 详细信息
来源: 评论
LEVERAGING 2D AND 3D CUES FOR FINE-GRAINED OBJECT CLASSIFICATION  23
LEVERAGING 2D AND 3D CUES FOR FINE-GRAINED OBJECT CLASSIFICA...
收藏 引用
23rd IEEE International Conference on Image Processing (ICIP)
作者: Wang, Xiaolong Li, Robert (Bo) Currey, Jon Samsung Res Amer Mountain View CA 94043 USA
Objects in fine-grained categories always share a high degree of shape similarity, making both "localizing discriminative parts" and "learning appearance descriptors" extremely difficult. We propos... 详细信息
来源: 评论