咨询与建议

限定检索结果

文献类型

  • 86 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 170 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 160 篇 工学
    • 96 篇 电气工程
    • 77 篇 计算机科学与技术...
    • 23 篇 信息与通信工程
    • 20 篇 软件工程
    • 11 篇 控制科学与工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 电子科学与技术(可...
    • 9 篇 仪器科学与技术
    • 7 篇 机械工程
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 41 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 170 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 zhang yi
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou

语言

  • 167 篇 英文
  • 3 篇 其他
检索条件"主题词=Convolutional sparse coding"
170 条 记 录,以下是151-160 订阅
排序:
convolutional-sparse-CODED DYNAMIC MODE DECOMPOSITION AND ITS APPLICATION TO RIVER STATE ESTIMATION  44
CONVOLUTIONAL-SPARSE-CODED DYNAMIC MODE DECOMPOSITION AND IT...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Kaneko, Y. Muramatsu, S. Yasuda, H. Hayasaka, K. Otake, Y. Ono, S. Yukawa, M. Niigata Univ Grad Sch Sci & Tech Niigata Japan Niigata Univ Res Inst Nat Hazard & Disaster Recovery Niigata Japan Niigata Univ Fac Sci Niigata Japan Tokyo Inst Tech Inst Innovat Res Tokyo Japan Niigata Univ Fac Engn Niigata Japan Keio Univ Fac Sci & Tech Keio Japan
This work proposes convolutional-sparse-coded dynamic mode decomposition (CSC-DMD) by unifying extended dynamic mode decomposition (EDMD) and convolutional sparse coding. EDMD is a data-driven method of analysis used ... 详细信息
来源: 评论
SPoD-Net: Fast Recovery of Microscopic Images Using Learned ISTA  11
SPoD-Net: Fast Recovery of Microscopic Images Using Learned ...
收藏 引用
11th Asian Conference on Machine Learning (ACML)
作者: Hara, Satoshi Chen, Weichih Washio, Takashi Wazawa, Tetsuichi Nagai, Takeharu Osaka Univ Osaka Japan Natl Taiwan Univ Taipei Taiwan
Recovering high quality images from microscopic observations is an essential technology in biological imaging. Existing recovery methods require solving an optimization problem by using iterative algorithms, which are... 详细信息
来源: 评论
Improving FISTA's Speed of Convergence via a Novel Inertial Sequence  27
Improving FISTA's Speed of Convergence via a Novel Inertial ...
收藏 引用
27th European Signal Processing Conference (EUSIPCO)
作者: Rodriguez, Paul Pontificia Univ Catolica Peru Elect Dept Lima Peru
The FISTA (fast iterative shrinkage-thresholding algorithm) is a well-known and fast (theoretical O(k(-2)) rate of convergence) procedure for solving optimization problems composed by the sum of two convex functions, ... 详细信息
来源: 评论
Multilayer convolutional sparse Modeling: Pursuit and Dictionary Learning
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2018年 第15期66卷 4090-4104页
作者: Sulam, Jeremias Papyan, Vardan Romano, Yaniv Elad, Michael Technion Israel Inst Technol Dept Comp Sci IL-3200003 Haifa Israel Stanford Univ Dept Stat Stanford CA 94305 USA
The recently proposed multilayer convolutional sparse coding (ML-CSC) model, consisting of a cascade of convolutional sparse layers, provides a new interpretation of convolutional neural networks (CNNs). Under this fr... 详细信息
来源: 评论
First- and Second-Order Methods for Online convolutional Dictionary Learning
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2018年 第2期11卷 1589-1628页
作者: Liu, Jialin Garcia-Cardona, Cristina Wohlbereg, Brendt Yin, Wotao UCLA Dept Math Los Angeles CA 90095 USA Los Alamos Natl Lab CCS Div Los Alamos NM 87545 USA Los Alamos Natl Lab Theoret Div Los Alamos NM 87545 USA
convolutional sparse representations are a form of sparse representation with a structured, translation-invariant dictionary. Most convolutional dictionary learning algorithms to date operate in batch mode, requiring ... 详细信息
来源: 评论
convolutional Dictionary Learning: Acceleration and Convergence
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2018年 第4期27卷 1697-1712页
作者: Chun, Il Yong Fessler, Jeffrey A. Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48019 USA
convolutional dictionary learning (CDL or sparsifying CDL) has many applications in image processing and computer vision. There has been growing interest in developing efficient algorithms for CDL, mostly relying on t... 详细信息
来源: 评论
EFFICIENT SEPARABLE FILTER ESTIMATION USING RANK-1 convolutional DICTIONARY LEARNING  28
EFFICIENT SEPARABLE FILTER ESTIMATION USING RANK-1 CONVOLUTI...
收藏 引用
IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
作者: Silva, Gustavo Quesada, Jorge Rodriguez, Paul Pontificia Univ Catolica Peru Elect Engn Dept Lima Peru
Natively learned separable filters for convolutional sparse coding (CSC) have recently been shown to provide equivalent reconstruction performance to their non-separable counterparts (as opposed to approximated separa... 详细信息
来源: 评论
convolutional Gaussian Mixture Models with Application to Compressive Sensing  20
Convolutional Gaussian Mixture Models with Application to Co...
收藏 引用
IEEE Statistical Signal Processing Workshop (SSP)
作者: Wang, Ren Liao, Xuejun Guo, Jingbo Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China Duke Univ Dept Elect & Comp Engn Durham NC 27708 USA
Gaussian mixture models (GMM) have been used to statistically represent patches in an image. Extending from small patches to an entire image, we propose a convolutional Gaussian mixture models (convGMM) to model the s... 详细信息
来源: 评论
SCALABLE convolutional DICTIONARY LEARNING WITH CONSTRAINED RECURRENT sparse AUTO-ENCODERS  28
SCALABLE CONVOLUTIONAL DICTIONARY LEARNING WITH CONSTRAINED ...
收藏 引用
IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP)
作者: Tolooshams, Bahareh Dey, Sourav Ba, Demba Harvard Univ Sch Engn & Appl Sci Cambridge MA 02138 USA Manifold AI Oakland CA USA
Given a convolutional dictionary underlying a set of observed signals, can a carefully designed auto-encoder recover the dictionary in the presence of noise? We introduce an auto-encoder architecture, termed constrain... 详细信息
来源: 评论
convolutional sparse REPRESENTATIONS WITH GRADIENT PENALTIES
CONVOLUTIONAL SPARSE REPRESENTATIONS WITH GRADIENT PENALTIES
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Wohlberg, Brendt Los Alamos Natl Lab Div Theoret Los Alamos NM 87545 USA
While convolutional sparse representations enjoy a number of useful properties, they have received limited attention for image reconstruction problems. The present paper compares the performance of block-based and con... 详细信息
来源: 评论