咨询与建议

限定检索结果

文献类型

  • 85 篇 期刊文献
  • 83 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 169 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 159 篇 工学
    • 96 篇 电气工程
    • 76 篇 计算机科学与技术...
    • 23 篇 信息与通信工程
    • 20 篇 软件工程
    • 11 篇 控制科学与工程
    • 11 篇 生物医学工程(可授...
    • 10 篇 仪器科学与技术
    • 10 篇 电子科学与技术(可...
    • 7 篇 机械工程
    • 7 篇 测绘科学与技术
    • 5 篇 光学工程
    • 3 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 2 篇 环境科学与工程(可...
    • 1 篇 船舶与海洋工程
    • 1 篇 生物工程
  • 42 篇 理学
    • 28 篇 物理学
    • 7 篇 地球物理学
    • 6 篇 数学
    • 2 篇 化学
    • 2 篇 地理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 大气科学
  • 35 篇 医学
    • 28 篇 临床医学
    • 8 篇 特种医学
    • 1 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...

主题

  • 169 篇 convolutional sp...
  • 18 篇 sparse represent...
  • 16 篇 convolutional co...
  • 15 篇 dictionary learn...
  • 13 篇 convolution
  • 10 篇 encoding
  • 10 篇 image reconstruc...
  • 10 篇 convolutional ne...
  • 9 篇 deep learning
  • 9 篇 dictionaries
  • 9 篇 sparse coding
  • 7 篇 convolutional di...
  • 6 篇 admm
  • 5 篇 task analysis
  • 5 篇 deep unfolding
  • 5 篇 local processing
  • 5 篇 image coding
  • 5 篇 image denoising
  • 5 篇 feature extracti...
  • 5 篇 image classifica...

机构

  • 5 篇 los alamos natl ...
  • 3 篇 zhejiang univ co...
  • 3 篇 beihang univ sch...
  • 3 篇 beihang univ sch...
  • 2 篇 vrije univ bruss...
  • 2 篇 indian inst tech...
  • 2 篇 sichuan univ col...
  • 2 篇 pontificia univ ...
  • 2 篇 imec kapeldreef ...
  • 2 篇 yanshan univ sch...
  • 2 篇 dhanekula inst e...
  • 2 篇 tcg crest inst a...
  • 2 篇 beihang univ dep...
  • 2 篇 southeast univ s...
  • 2 篇 anhui polytech u...
  • 2 篇 aalto univ dept ...
  • 2 篇 indian inst tech...
  • 2 篇 los alamos natl ...
  • 2 篇 school of electr...
  • 2 篇 technion israel ...

作者

  • 11 篇 wohlberg brendt
  • 5 篇 elad michael
  • 5 篇 rodriguez paul
  • 4 篇 deng xin
  • 4 篇 papyan vardan
  • 4 篇 sulam jeremias
  • 4 篇 xu mai
  • 3 篇 he jingwei
  • 3 篇 veshki farshad g...
  • 3 篇 wang shengbiao
  • 3 篇 qian yuntao
  • 3 篇 romano yaniv
  • 3 篇 yu lei
  • 3 篇 giryes raja
  • 3 篇 xu jingyi
  • 3 篇 yang wen
  • 3 篇 wang jinjia
  • 3 篇 vorobyov sergiy ...
  • 2 篇 huang zhou
  • 2 篇 mandal manas k.

语言

  • 166 篇 英文
  • 3 篇 其他
检索条件"主题词=Convolutional sparse coding"
169 条 记 录,以下是31-40 订阅
排序:
A Greedy Approach to l0,∞-Based convolutional sparse coding
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2019年 第1期12卷 186-210页
作者: Plaut, Elad Giryes, Raja Tel Aviv Univ Sch Elect Engn IL-6997801 Tel Aviv Israel
sparse coding techniques for image processing traditionally rely on the processing of small overlapping patches separately, followed by averaging. This has the disadvantage that the reconstructed image no longer obeys... 详细信息
来源: 评论
Single image super-resolution based on adaptive convolutional sparse coding and convolutional neural networks
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION 2019年 58卷 651-661页
作者: Zhao, Jianwei Chen, Chen Zhou, Zhenghua Cao, Feilong China Jiliang Univ Dept Informat Sci & Math Hangzhou 310018 Zhejiang Peoples R China
The convolutional sparse coding-based super-resolution (CSC-SR) method has shown its good performance in single image super-resolution. It divides the low-resolution (LR) image into low-frequency part and the high-fre... 详细信息
来源: 评论
Revisiting convolutional sparse coding for Image Denoising: From a Multi-Scale Perspective
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2022年 29卷 1202-1206页
作者: Xu, Jingyi Deng, Xin Xu, Mai Beihang Univ Sch Cyber Sci & Technol Beijing 100190 Peoples R China Beihang Univ Dept Elect Informat Engn Beijing 100190 Peoples R China
Recently, convolutional sparse coding (CSC) has shown great success in many image processing tasks, such as image super-resolution and image separation. However, it performs poorly in image denoising task. In this let... 详细信息
来源: 评论
Unsupervised Transfer Learning via Multi-Scale convolutional sparse coding for Biomedical Applications
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2018年 第5期40卷 1182-1194页
作者: Chang, Hang Han, Ju Zhong, Cheng Snijders, Antoine M. Mao, Jian-Hua Lawrence Berkeley Natl Lab Berkeley Biomed Data Sci Ctr Biol Syst & Engn Div Berkeley CA 94720 USA
The capabilities of (I) learning transferable knowledge across domains;and (II) fine-tuning the pre-learned base knowledge towards tasks with considerably smaller data scale are extremely important. Many of the existi... 详细信息
来源: 评论
Image classification via convolutional sparse coding
收藏 引用
VISUAL COMPUTER 2023年 第5期39卷 1731-1744页
作者: Nozaripour, Ali Soltanizadeh, Hadi Semnan Univ Dept Elect Comp Engn Semnan *** Iran Semnan Univ Fac Elect Comp Engn Semnan *** Iran
The convolutional sparse coding (CSC) model has recently attracted a lot of attention in the signal and image processing communities. Since, in traditional sparse coding methods, a significant assumption is that all i... 详细信息
来源: 评论
Ultrasonic defect characterization using time-domain scattering matrices and convolutional sparse coding
收藏 引用
NDT & E INTERNATIONAL 2022年 131卷
作者: Bai, Long Liu, Nanxin Guo, Changrong Xu, Jianfeng Huazhong Univ Sci & Technol Sch Mech Sci & Engn State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China
In this paper, the use of the time-domain scattering matrix for ultrasonic characterization of defects is explored. An approach based on convolutional sparse coding is proposed for extraction of the shift-invariant fe... 详细信息
来源: 评论
Scalable Online convolutional sparse coding
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2018年 第10期27卷 4850-4859页
作者: Wang, Yaqing Yao, Quanming Kwok, James T. Ni, Lionel M. Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China 4Paradigm Inc Beijing Peoples R China Univ Macau Dept Comp & Informat Sci Macau Peoples R China
convolutional sparse coding (CSC) improves sparse coding by learning a shift-invariant dictionary from the data. However, most existing CSC algorithms operate in the batch mode and are computationally expensive. In th... 详细信息
来源: 评论
Variations on the convolutional sparse coding Model
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 519-528页
作者: Rey-Otero, Ives Sulam, Jeremias Elad, Michael Technion Israel Inst Technol Dept Comp Sci IL-32000 Haifa Israel
Over the past decade, the celebrated sparse representation model has achieved impressive results in various signal and image processing tasks. A convolutional version of this model, termed convolutional sparse coding ... 详细信息
来源: 评论
Stability Analysis of l0,∞-Norm Based convolutional sparse coding Using Stripe Coherence
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2020年 68卷 5810-5823页
作者: Fu, Yuli Zhu, Tao Xiang, Youjun Chen, Zhen Cai, Lei South China Univ Technol Sch Elect & Informat Engn Guangzhou 510640 Peoples R China
Theoretical guarantees for the l(0,infinity)-pseudo-norm based convolutional sparse coding have been established in a recent work. However, the stability analysis in the noisy case via the stripe coherence is absent. ... 详细信息
来源: 评论
Generalized convolutional sparse coding With Unknown Noise
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2020年 29卷 5386-5395页
作者: Wang, Yaqing Kwok, James T. Ni, Lionel M. Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China Baidu Res Business Intelligence Lab Beijing 100085 Peoples R China Natl Engn Lab Deep Learning Technol & Applicat Beijing 100085 Peoples R China
convolutional sparse coding (CSC) can learn representative shift-invariant patterns from data. However, existing CSC methods assume the Gaussian noise, which can be restrictive in some challenging applications. In thi... 详细信息
来源: 评论