咨询与建议

限定检索结果

文献类型

  • 49 篇 期刊文献
  • 14 篇 会议

馆藏范围

  • 63 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 42 篇 理学
    • 33 篇 统计学(可授理学、...
    • 8 篇 数学
    • 4 篇 物理学
    • 2 篇 生物学
    • 1 篇 地理学
    • 1 篇 地球物理学
    • 1 篇 系统科学
  • 34 篇 工学
    • 22 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 8 篇 信息与通信工程
    • 2 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
  • 20 篇 经济学
    • 19 篇 应用经济学
    • 1 篇 理论经济学
  • 3 篇 农学
    • 1 篇 作物学
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 63 篇 coordinate desce...
  • 9 篇 variable selecti...
  • 8 篇 lasso
  • 6 篇 generalized fuse...
  • 4 篇 oracle property
  • 3 篇 penalized likeli...
  • 3 篇 spatio-temporal ...
  • 3 篇 bayesian algorit...
  • 3 篇 penalized least ...
  • 3 篇 high-dimensional...
  • 3 篇 altimetry
  • 2 篇 features selecti...
  • 2 篇 power allocation
  • 2 篇 shrinkage
  • 2 篇 model selection
  • 2 篇 bic
  • 2 篇 additive poisson...
  • 2 篇 total variation
  • 2 篇 elastic net
  • 2 篇 adaptive lasso

机构

  • 5 篇 korea univ dept ...
  • 3 篇 korea univ dept ...
  • 3 篇 chungbuk natl un...
  • 2 篇 univ minnesota d...
  • 2 篇 univ rochester d...
  • 2 篇 cukurova univ fa...
  • 2 篇 hiroshima univ g...
  • 2 篇 hiroshima univ e...
  • 1 篇 univ n carolina ...
  • 1 篇 graduate school ...
  • 1 篇 cukurova univ fa...
  • 1 篇 lakireddy bali r...
  • 1 篇 radiat effects r...
  • 1 篇 univ lisbon inst...
  • 1 篇 southwest jiaoto...
  • 1 篇 univ essex sch c...
  • 1 篇 univ michigan de...
  • 1 篇 chungbuk natl un...
  • 1 篇 harvard univ dep...
  • 1 篇 georgia state un...

作者

  • 8 篇 jhong jae-hwan
  • 8 篇 koo ja-yong
  • 7 篇 ohishi mineaki
  • 6 篇 yanagihara hirok...
  • 4 篇 yamamura mariko
  • 3 篇 genc murat
  • 3 篇 lee jungjun
  • 3 篇 ozkale m. revan
  • 3 篇 halimi abderrahi...
  • 3 篇 bak kwan-young
  • 2 篇 oualkacha karim
  • 2 篇 wu tong tong
  • 2 篇 okamura kensuke
  • 2 篇 shin jae-kyung
  • 2 篇 itoh yoshimichi
  • 2 篇 hirose kei
  • 2 篇 ouhourane mohame...
  • 2 篇 honeine paul
  • 1 篇 mineaki ohishi
  • 1 篇 lv yazhao

语言

  • 59 篇 英文
  • 4 篇 其他
检索条件"主题词=Coordinate descent algorithm"
63 条 记 录,以下是41-50 订阅
排序:
Penalized empirical likelihood for the sparse Cox regression model
收藏 引用
JOURNAL OF STATISTICAL PLANNING AND INFERENCE 2019年 201卷 71-85页
作者: Wang, Dongliang Wu, Tong Tong Zhao, Yichuan SUNY Upstate Med Univ Dept Publ Hlth & Prevent Med Syracuse NY 13210 USA Univ Rochester Dept Biostat & Computat Biol Rochester NY 14627 USA Georgia State Univ Dept Math & Stat Atlanta GA 30303 USA
The current penalized regression methods for selecting predictor variables and estimating the associated regression coefficients in the sparse Cox model are mainly based on partial likelihood. In this paper, a bias-co... 详细信息
来源: 评论
Robust Gaussian Graphical Modeling Via l1 Penalization
收藏 引用
BIOMETRICS 2012年 第4期68卷 1197-1206页
作者: Sun, Hokeun Li, Hongzhe Univ Penn Dept Biostat & Epidemiol Perelman Sch Med Philadelphia PA 19104 USA
Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically hav... 详细信息
来源: 评论
Customized algorithms for growing connected resistive networks
Customized algorithms for growing connected resistive networ...
收藏 引用
10th IFAC Symposium on Nonlinear Control Systems (NOLCOS)
作者: Moghaddam, Sepideh Hassan Juvanovic, Mihailo R. Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA
We consider the problem of adding edges to connected resistive networks in order to optimally enhance their performance. The performance is captured by the H-2 norm of the closed-loop network and the l(1) regularizati... 详细信息
来源: 评论
COFADMM: A Computational features selection with Alternating Direction Method of Multipliers
COFADMM: A Computational features selection with Alternating...
收藏 引用
14th Annual International Conference on Computational Science
作者: El Anbari, Mohammed Alam, Sidra Bensmail, Halima Qatar Comp Res Ctr Doha Qatar Carnegie Mellon Univ Doha Qatar
Due to the explosion in size and complexity of Big Data, it is increasingly important to be able to solve problems with very large number of features. Classical feature selection procedures involves combinatorial opti... 详细信息
来源: 评论
FILTERING SMOOTH ALTIMETRIC SIGNALS USING A BAYESIAN algorithm  24
FILTERING SMOOTH ALTIMETRIC SIGNALS USING A BAYESIAN ALGORIT...
收藏 引用
24th European Signal Processing Conference (EUSIPCO)
作者: Halimi, Abderrahim Buller, Gerald McLaughlin, Steve Honeine, Paul Heriot Watt Univ Sch Engn & Phys Sci Edinburgh Midlothian Scotland Normandie Univ UNIROUEN UNIHAVRE INSA RouenLITIS Rouen France
This paper presents a new Bayesian strategy for the estimation of smooth signals corrupted by Gaussian noise. The method assumes a smooth evolution of a succession of continuous signals that can have a numerical or an... 详细信息
来源: 评论
A new methodology for evaluating profile and position errors of blade based on parameter priority
A new methodology for evaluating profile and position errors...
收藏 引用
International Conference on Optical Instruments and Technology (OIT) - Optoelectronic Measurement Technology and Systems
作者: Hao, Junjie Huang, Junhui Wang, Zhao Gao, Janmin Xi An Jiao Tong Univ Sch Mech Engn Xian 710049 Peoples R China Xi An Jiao Tong Univ Western China Inst Qual Sci & Technol Xian 710049 Peoples R China
As one of the core components of a turbine, the quality of the blade manufacturing has a strong impact on the energy conversion efficiency of the turbine, where the key technology of quality evaluation of blades is po... 详细信息
来源: 评论
SPARSE MODELING ON DISTRIBUTED ENCRYPTION DATA
SPARSE MODELING ON DISTRIBUTED ENCRYPTION DATA
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Bandoh, Yukihiro Nakachi, Takayuki Kiya, Hiroshi NTT Corp Yokosuka Kanagawa 2390847 Japan Tokyo Metropolitan Univ Tokyo 1910065 Japan
Big-data analysis by edge/cloud systems is becoming more important. However, when information may lead to personal identification, such information tends to be encrypted and restricted to its owners to ensure privacy ... 详细信息
来源: 评论
AN ITERATIVELY WEIGHTED MMSE APPROACH TO DISTRIBUTED SUM-UTILITY MAXIMIZATION FOR A MIMO INTERFERING BROADCAST CHANNEL
AN ITERATIVELY WEIGHTED MMSE APPROACH TO DISTRIBUTED SUM-UTI...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Shi, Qingjiang Razaviyayn, Meisam Luo, Zhi-Quan He, Chen Shanghai Jiao Tong Univ Dept Elect Engn Shanghai 200030 Peoples R China Univ Minnesota Dept Elect & Comp Engn Minneapolis MN 55455 USA
Consider the MIMO interfering broadcast channel whereby multiple base stations in a cellular network simultaneously transmit signals to a group of users in their own cells while causing interference to the users in ot... 详细信息
来源: 评论
Spatio-Temporal Adaptive Fused Lasso for Proportion Data  13th
Spatio-Temporal Adaptive Fused Lasso for Proportion Data
收藏 引用
13th International KES Conference on Intelligent Decision Technologies (KES-IDT)
作者: Yamamura, Mariko Ohishi, Mineaki Yanagihara, Hirokazu Radiat Effects Res Fdn Dept Stat Minami Ku 5-2 Hijiyama Pk Hiroshima 7320815 Japan Hiroshima Univ Educ & Res Ctr AI & Data Innovat Naka Ku 1-1-89 Higashi Senda Hiroshima 7300053 Japan Hiroshima Univ Grad Sch Adv Sci & Engn 1-3-1 Kagamiyama Higashihiroshima Hiroshima 7398526 Japan
Population-corrected rates are often used in statistical documents that show the features of a municipality. In addition, it is important to determine changes of the features over time, and for this purpose, data coll... 详细信息
来源: 评论
K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting
收藏 引用
INTERNATIONAL JOURNAL OF FORECASTING 2016年 第3期32卷 1074-1080页
作者: Zhang, Yao Wang, Jianxue Xi An Jiao Tong Univ Sch Elect Engn Xian 710049 Peoples R China
Probabilistic forecasts provide quantitative information in relation to energy uncertainty, which is essential for making better decisions on the operation of power systems with an increasing penetration of wind power... 详细信息
来源: 评论