Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically hav...
详细信息
Gaussian graphical models have been widely used as an effective method for studying the conditional independency structure among genes and for constructing genetic networks. However, gene expression data typically have heavier tails or more outlying observations than the standard Gaussian distribution. Such outliers in gene expression data can lead to wrong inference on the dependency structure among the genes. We propose a l(1) penalized estimation procedure for the sparse Gaussian graphical models that is robustified against possible outliers. The likelihood function is weighted according to how the observation is deviated, where the deviation of the observation is measured based on its own likelihood. An efficient computational algorithm based on the coordinate gradient descent method is developed to obtain the minimizer of the negative penalized robustified-likelihood, where nonzero elements of the concentration matrix represents the graphical links among the genes. After the graphical structure is obtained, we re-estimate the positive definite concentration matrix using an iterative proportional fitting algorithm. Through simulations, we demonstrate that the proposed robust method performs much better than the graphical Lasso for the Gaussian graphical models in terms of both graph structure selection and estimation when outliers are present. We apply the robust estimation procedure to an analysis of yeast gene expression data and show that the resulting graph has better biological interpretation than that obtained from the graphical Lasso.
Consider the MIMO interfering broadcast channel whereby multiple base stations in a cellular network simultaneously transmit signals to a group of users in their own cells while causing interference to the users in ot...
详细信息
ISBN:
(纸本)9781457705397
Consider the MIMO interfering broadcast channel whereby multiple base stations in a cellular network simultaneously transmit signals to a group of users in their own cells while causing interference to the users in other cells. The basic problem is to design linear beamformers that can maximize the system throughput. In this paper we propose a linear transceiver design algorithm for weighted sum-rate maximization that is based on iterative minimization of weighted mean squared error (MSE). The proposed algorithm only needs local channel knowledge and converges to a stationary point of the weighted sum-rate maximization problem. Furthermore, we extend the algorithm to a general class of utility functions and establish its convergence. The resulting algorithm can be implemented in a distributed asynchronous manner. The effectiveness of the proposed algorithm is validated by numerical experiments.
Consider the MIMO interfering broadcast channel whereby multiple base stations in a cellular network simultaneously transmit signals to a group of users in their own cells while causing interference to the users in ot...
详细信息
ISBN:
(纸本)9781457705380
Consider the MIMO interfering broadcast channel whereby multiple base stations in a cellular network simultaneously transmit signals to a group of users in their own cells while causing interference to the users in other cells. The basic problem is to design linear beamformers that can maximize the system throughput. In this paper we propose a linear transceiver design algorithm for weighted sum-rate maximization that is based on iterative minimization of weighted mean squared error (MSE). The proposed algorithm only needs local channel knowledge and converges to a stationary point of the weighted sum-rate maximization problem. Furthermore, we extend the algorithm to a general class of utility functions and establish its convergence. The resulting algorithm can be implemented in a distributed asynchronous manner. The effectiveness of the proposed algorithm is validated by numerical experiments.
暂无评论