咨询与建议

限定检索结果

文献类型

  • 8 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 11 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 交通运输工程
    • 2 篇 软件工程
    • 1 篇 机械工程
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 2 篇 理学
    • 2 篇 物理学
  • 1 篇 医学
    • 1 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 14 篇 cross-domain obj...
  • 4 篇 unsupervised dom...
  • 3 篇 object detection
  • 3 篇 adversarial lear...
  • 3 篇 feature extracti...
  • 3 篇 detectors
  • 2 篇 style transfer
  • 2 篇 task analysis
  • 2 篇 proposals
  • 2 篇 domain-consisten...
  • 1 篇 label screening ...
  • 1 篇 one-level featur...
  • 1 篇 head
  • 1 篇 reinforcement le...
  • 1 篇 foreground-aware...
  • 1 篇 multi-task
  • 1 篇 prototypes
  • 1 篇 domain-specific ...
  • 1 篇 source-guided ta...
  • 1 篇 domain adaptatio...

机构

  • 2 篇 nanjing univ pos...
  • 2 篇 univ chinese aca...
  • 1 篇 china univ geosc...
  • 1 篇 hunan univ coll ...
  • 1 篇 beijing jiaotong...
  • 1 篇 sun yat sen univ...
  • 1 篇 chinese acad sci...
  • 1 篇 chinese acad sci...
  • 1 篇 fuzhou univ sch ...
  • 1 篇 hokkaido univ fa...
  • 1 篇 beijing inst tec...
  • 1 篇 army acad armore...
  • 1 篇 hefei univ techn...
  • 1 篇 hunan univ wuxi ...
  • 1 篇 chinese acad sci...
  • 1 篇 key lab machine ...
  • 1 篇 chinese univ hon...
  • 1 篇 hunan univ arts ...
  • 1 篇 hefei univ techn...
  • 1 篇 chinese acad sci...

作者

  • 2 篇 xu changsheng
  • 2 篇 jiao yifan
  • 2 篇 yao hantao
  • 1 篇 duan lixin
  • 1 篇 wang qinzhao
  • 1 篇 li yang
  • 1 篇 li changxian
  • 1 篇 wang shuo
  • 1 篇 xie bojun
  • 1 篇 chen jin
  • 1 篇 zhao ming
  • 1 篇 chen zhicong
  • 1 篇 huang zhijin
  • 1 篇 zhu chen
  • 1 篇 cao zhe
  • 1 篇 wu xinxiao
  • 1 篇 tan wenxue
  • 1 篇 cui yunxian
  • 1 篇 li yidong
  • 1 篇 gao ming

语言

  • 14 篇 英文
检索条件"主题词=Cross-domain Object Detection"
14 条 记 录,以下是1-10 订阅
排序:
cross-domain object detection Model via Contrastive Learning with Style Transfer  29th
Cross-domain Object Detection Model via Contrastive Learning...
收藏 引用
29th International Conference on Neural Information Processing
作者: Zhao, Ming Wei, Xing Lu, Yang Bai, Ting Zhao, Chong Chen, Lei Hu, Di Hefei Univ Technol Sch Comp & Informat Hefei Peoples R China Hefei Univ Technol Intelligent Mfg Technol Res Inst Hefei Peoples R China Hefei Univ Technol Intelligent Interconnected Syst Lab Anhui Prov Hefei Peoples R China Chinese Acad Sci Inst Intelligent Machines HFIPS Hefei Peoples R China
cross-domain object detection usually solves the problem of domain transfer by reducing the difference between the source domain and target domain. However, existing solutions do not effectively solve the performance ... 详细信息
来源: 评论
Unsupervised cross-domain object detection based on dynamic smooth cross entropy
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 1-14页
作者: Xie, Bojun Huang, Zhijin Chen, Junfen Key Lab Machine Learning & Computat Intelligence Baoding 071002 Hebei Peoples R China Hebei Univ Coll Math & Informat Sci Baoding 071002 Hebei Peoples R China
Pseudo-label self-training methods are highly regarded in cross-domain object detection (CDOD) models for their reduced annotation costs, strong applicability, and straightforward deployment. However, existing methods... 详细信息
来源: 评论
THNet: Transferability-Aware Hierarchical Network for Robust cross-domain object detection
收藏 引用
IEEE ACCESS 2024年 12卷 155469-155484页
作者: Song, Wu Ren, Sheng Tan, Wenxue Wang, Xiping Hunan Univ Arts & Sci Sch Comp & Elect Engn Changde 415000 Peoples R China
Deep learning has advanced object detection, but generalizing models from source to target domains remains a challenge due to multi-level domain drift and untransferable information. To address this, we propose a tran... 详细信息
来源: 评论
Dual Instance-Consistent Network for cross-domain object detection
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2023年 第6期45卷 7338-7352页
作者: Jiao, Yifan Yao, Hantao Xu, Changsheng Nanjing Univ Posts & Telecommun Sch Commun & Informat Engn Nanjing Peoples R China Chinese Acad Sci Inst Automat Natl Lab Pattern Recognit Beijing Peoples R China Chinese Acad Sci Inst Automation Natl Lab Pattern Recognit Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100049 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China
cross-domain object detection aims to transfer knowledge from a labeled dataset to an unlabeled dataset. Most existing methods apply a unified embedding model to generate the tightly coupled source and target descript... 详细信息
来源: 评论
Teacher-Student cross-domain object detection Model Combining Style Transfer and Adversarial Learning  6th
Teacher-Student Cross-Domain Object Detection Model Combinin...
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Wu, Lijun Cao, Zhe Chen, Zhicong Fuzhou Univ Sch Adv Mfg Fujian Peoples R China
cross-domain object detection is challenging because object detection models are significantly susceptible to domain style. As a popular semi-supervised learning method, the teacher-student framework (pseudo labels fr... 详细信息
来源: 评论
DIVERGENCE-GUIDED FEATURE ALIGNMENT FOR cross-domain object detection  47
DIVERGENCE-GUIDED FEATURE ALIGNMENT FOR CROSS-DOMAIN OBJECT ...
收藏 引用
47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Li, Zongyao Togo, Ren Ogawa, Takahiro Haseyama, Miki Hokkaido Univ Grad Sch Informat Sci & Technol Sapporo Hokkaido Japan Hokkaido Univ Educ & Res Ctr Math & Data Sci Sapporo Hokkaido Japan Hokkaido Univ Fac Informat Sci & Technol Sapporo Hokkaido Japan
domain shift causes performance drop in cross-domain object detection. To alleviate the domain shift, a prevailing approach is global feature alignment with adversarial learning. However, such simple feature alignment... 详细信息
来源: 评论
Sequential Instance Refinement for cross-domain object detection in Images
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 3970-3984页
作者: Chen, Jin Wu, Xinxiao Duan, Lixin Chen, Lin Beijing Inst Technol Beijing Lab Intelligent Informat Technol Beijing 100081 Peoples R China Beijing Inst Technol Sch Comp Sci Beijing 100081 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Wyze Labs Kirkland WA 98034 USA
cross-domain object detection in images has attracted increasing attention in the past few years, which aims at adapting the detection model learned from existing labeled images (source domain) to newly collected unla... 详细信息
来源: 评论
Tri-Flow-YOLO: Counter helps to improve cross-domain object detection
收藏 引用
HELIYON 2024年 第11期10卷 e32413页
作者: Wei, Jian Wang, Qinzhao Army Acad Armored Forces Beijing 100071 Peoples R China
The excellence of intelligent detection models has been widely recognized, but in terms of crossdomain scenes, they still face performance degradation and low accuracy. A multi-supervised TriFlow-YOLO model is propose... 详细信息
来源: 评论
An Efficient and Accurate cross-domain object detection Method Using One-Level Feature and domain Adaptation
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2023年 第7期37卷 2350016-2350016页
作者: Zhang, Tianyuan Song, Xudong Zhu, Chen Liang, Pan Sun, Jialiang Wang, Shuo Cui, Yunxian Li, Changxian Dalian Jiaotong Univ Big Data & Intelligent Syst Lab Dalian 116028 Liaoning Peoples R China
To improve the accuracy of cross-domain object detection, the existing unsupervised domain adaptation (UDA) object detection methods mostly use Feature Pyramid Network (FPN), multiple Region Proposal Network (RPN), an... 详细信息
来源: 评论
HIERARCHICAL domain-CONSISTENT NETWORK FOR cross-domain object detection
HIERARCHICAL DOMAIN-CONSISTENT NETWORK FOR CROSS-DOMAIN OBJE...
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Liu, Yuanyuan Liu, Ziyang Fang, Fang Fu, Zhanghua Chen, Zhanlong China Univ Geosci Sch Geog & Informat Engn Wuhan Peoples R China Chinese Univ Hong Kong Inst Robot & Intelligent Mfg Shenzhen Peoples R China
cross-domain object detection is a very challenging task due to multi-level domain shift in an unseen domain. To address the problem, this paper proposes a hierarchical domain-consistent network (HDCN) for cross-domai... 详细信息
来源: 评论