咨询与建议

限定检索结果

文献类型

  • 67 篇 期刊文献
  • 48 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 116 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 98 篇 工学
    • 51 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 10 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 6 篇 仪器科学与技术
    • 5 篇 机械工程
    • 4 篇 力学(可授工学、理...
    • 4 篇 测绘科学与技术
    • 4 篇 地质资源与地质工...
    • 3 篇 土木工程
    • 3 篇 水利工程
    • 3 篇 交通运输工程
    • 3 篇 环境科学与工程(可...
    • 3 篇 生物医学工程(可授...
    • 3 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 石油与天然气工程
  • 24 篇 理学
    • 7 篇 生物学
    • 5 篇 化学
    • 5 篇 地球物理学
    • 4 篇 数学
    • 4 篇 物理学
    • 2 篇 地理学
    • 2 篇 海洋科学
    • 2 篇 地质学
  • 22 篇 管理学
    • 21 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 6 篇 医学
    • 3 篇 基础医学(可授医学...
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
    • 2 篇 教育学
  • 2 篇 农学

主题

  • 116 篇 dbscan algorithm
  • 15 篇 clustering
  • 15 篇 data mining
  • 10 篇 k-means algorith...
  • 4 篇 big data
  • 4 篇 mapreduce
  • 4 篇 density-based cl...
  • 3 篇 clustering algor...
  • 3 篇 density-skewed c...
  • 3 篇 lidar
  • 3 篇 spatial data min...
  • 3 篇 cluster analysis
  • 3 篇 clustering analy...
  • 3 篇 greedy algorithm
  • 3 篇 unsupervised lea...
  • 2 篇 intrusion detect...
  • 2 篇 pick-up hotspots
  • 2 篇 anomaly detectin...
  • 2 篇 spatial cluster ...
  • 2 篇 cfast-match

机构

  • 2 篇 school of busine...
  • 2 篇 school of comput...
  • 2 篇 northwestern pol...
  • 1 篇 tessonics inc ct...
  • 1 篇 univ dist franci...
  • 1 篇 lublin univ tech...
  • 1 篇 carlos iii univ ...
  • 1 篇 sch commun & inf...
  • 1 篇 jilin univ trans...
  • 1 篇 univ tabriz fac ...
  • 1 篇 liaocheng univ s...
  • 1 篇 univ human dev d...
  • 1 篇 nyu tandon sch e...
  • 1 篇 jiangxi univ fin...
  • 1 篇 budapest univ te...
  • 1 篇 sixth middle sch...
  • 1 篇 uned artificial ...
  • 1 篇 acad sinica taiw...
  • 1 篇 konkuk univ dept...
  • 1 篇 nanjing univ inf...

作者

  • 3 篇 岳士弘
  • 3 篇 李平
  • 3 篇 周水庚
  • 3 篇 郭继东
  • 2 篇 saadatfar hamid
  • 2 篇 li yan
  • 2 篇 shuai ye
  • 2 篇 guoen xia
  • 2 篇 xiangqing li
  • 2 篇 xianquan zhang
  • 2 篇 hanafi nooshin
  • 1 篇 dziadosz marcin
  • 1 篇 chen qianqian
  • 1 篇 guan ji hong 1 z...
  • 1 篇 ziyi liu
  • 1 篇 qiu jian
  • 1 篇 chen hanlin
  • 1 篇 chen zhuang
  • 1 篇 cao jun
  • 1 篇 zaccagnino david...

语言

  • 112 篇 英文
  • 4 篇 其他
检索条件"主题词=DBScan algorithm"
116 条 记 录,以下是1-10 订阅
排序:
Vision Sensor-Based Shoe Detection for Human Tracking in a Human-Robot Coexisting Environment: A Photometric Invariant Approach Using dbscan algorithm
收藏 引用
IEEE SENSORS JOURNAL 2019年 第12期19卷 4549-4559页
作者: Paral, Pritam Chatterjee, Amitava Rakshit, Anjan Jadavpur Univ Dept Elect Engn Kolkata 700032 India
Human-tracking problems are considered as one of the major problems in a human-robot coexisting environment. Such systems often employ a sensor fusion mechanism involving a vision sensing-based system along with ultra... 详细信息
来源: 评论
K-dbscan: An improved dbscan algorithm for big data
收藏 引用
JOURNAL OF SUPERCOMPUTING 2021年 第6期77卷 6214-6235页
作者: Gholizadeh, Nahid Saadatfar, Hamid Hanafi, Nooshin Univ Birjand Birjand South Khorasan Iran
Big data storage and processing are among the most important challenges now. Among data mining algorithms, dbscan is a common clustering method. One of the most important drawbacks of this algorithm is its low executi... 详细信息
来源: 评论
An improved dbscan algorithm for hazard recognition of obstacles in unmanned scenes
收藏 引用
SOFT COMPUTING 2023年 第24期27卷 18585-18604页
作者: Zhang, Wenying Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou 450001 Henan Peoples R China
The environmental perception system is the foundation of unmanned driving systems and also the fundamental guarantee of the safety and intelligence of unmanned vehicles. The obstacle hazard identification technology i... 详细信息
来源: 评论
Scaling up the dbscan algorithm for Clustering Large Spatial Databases Based on Sampling Technique
收藏 引用
Wuhan University Journal of Natural Sciences 2001年 第Z1期6卷 467-473页
作者: Guan Ji hong 1, Zhou Shui geng 2, Bian Fu ling 3, He Yan xiang 1 1. School of Computer, Wuhan University, Wuhan 430072, China 2.State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, China 3.College of Remote Sensin School of Computer Wuhan University Wuhan China State Key Laboratory of Software Engineering Wuhan University Wuhan China College of Remote Sensing and Information Engineering Wuhan University Wuhan China
Clustering, in data mining, is a useful technique for discovering interesting data distributions and patterns in the underlying data, and has many application fields, such as statistical data analysis, pattern recogni... 详细信息
来源: 评论
Consumer clusters detection with geo-tagged social network data using dbscan algorithm: a case study of the Pearl River Delta in China
收藏 引用
GEOJOURNAL 2021年 第1期86卷 317-337页
作者: Fan, Tianhui Guo, Naijing Ren, Yujie Grenoble Ecole Management Dept Mkt Grenoble France Nanjing Forestry Univ Coll Landscape Architecture Nanjing Peoples R China Kyushu Univ Grad Sch Human Environm Studies Fukuoka Japan
With the advent of the Big Data era, multi-source geo-tagged data provide a new perspective and data source for urban spatial analysis. In order to accurately identify the location and characteristics of consumer clus... 详细信息
来源: 评论
Load Spectra Extrapolation by Bandwidth-Optimized Kernel Density Estimation Based on dbscan algorithm
收藏 引用
JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES 2024年 第2期12卷 1445-1456页
作者: Yang, Xuefeng Zhou, Xiaojun Wan, Bowen Fu, Yimeng Zhejiang Univ Key Lab Adv Mfg Technol Zhejiang Prov Hangzhou 310027 Peoples R China
Load spectra extrapolation is the basis of fatigue analysis and life prediction in engineering. This paper extrapolates the loads based on the kernel density estimation method, and a new bandwidth calculation method o... 详细信息
来源: 评论
Memory Effect in dbscan algorithm
Memory Effect in DBSCAN Algorithm
收藏 引用
4th International Conference on Computer Science and Education
作者: Li Jian Yu Wei Yan Bao-Ping Chinese Acad Sci Comp Network Informat Ctr Beijing Peoples R China Bei Hang Univ Software Coll Beijing Peoples R China
As a density-based clustering algorithm, dbscan plays an important role in data mining. Normally dbscan algorithm is computationally expensive, limiting its performance in large scale data sets, especially in high dim... 详细信息
来源: 评论
Forecast The Distribution Of Urban Water Point By Using Improved dbscan algorithm
Forecast The Distribution Of Urban Water Point By Using Impr...
收藏 引用
3rd International Conference on Intelligent System Design and Engineering Applications (ISDEA)
作者: Yan Jianzhuo Qi Mengyao Fang Liying Wang Ying Yu Jianyun Beijing Univ Technol Elect Informat & Control Engn Inst Beijing 100124 Peoples R China Capital Univ Econ & Busines Educ & Technol Ctr Beijing 100070 Peoples R China
Spatial clustering is an important method for spatial data mining and knowledge discovery. According to the deficiency existing in density-based clustering algorithm dbscan, such as the I/O overhead, memory consumptio... 详细信息
来源: 评论
Application of dbscan algorithm in Precision Fertilization Decision of Maize  11th
Application of DBSCAN Algorithm in Precision Fertilization D...
收藏 引用
11th IFIP WG 5.14 International Conference on Computer and Computing Technologies in Agriculture (CCTA)
作者: Li, Yang Wang, Guowei Chen, Yu Jiao, Yang Yu, Haijiao Zhao, Guogang Jilin Agr Univ Sch Informat Technol Changchun 130118 Peoples R China Jilin Prov Res Ctr Changchun 130118 Peoples R China Jilin Univ Sch Biol & Agr Engn Changchun 130022 Peoples R China Sixth Middle Sch Changchun Changchun 130000 Peoples R China JLJU City Coll Changchun 130000 Peoples R China
In the current era of big data, information technology is developing quite rapidly, the most important data mining technology in information technology is also widely used, and now it is applied to the field of agricu... 详细信息
来源: 评论
A Parallel dbscan algorithm Based On Spark  6
A Parallel DBSCAN Algorithm Based On Spark
收藏 引用
2016 IEEE International Conferences on BDCloud/SocialCom/SustainCom 2016
作者: Luo, Guangchun Luo, Xiaoyu Gooch, Thomas Fairley Tian, Ling Qin, Ke Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu Peoples R China Georgia State Univ Dept Comp Sci Atlanta GA 30303 USA
With the explosive growth of data, we have entered the era of big data. In order to sift through masses of information, many data mining algorithms using parallelization are being implemented. Cluster analysis occupie... 详细信息
来源: 评论