咨询与建议

限定检索结果

文献类型

  • 4 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 4 篇 信息与通信工程
    • 4 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 网络空间安全
    • 1 篇 控制科学与工程
    • 1 篇 软件工程
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 文学
    • 1 篇 新闻传播学
  • 1 篇 医学
    • 1 篇 公共卫生与预防医...
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 5 篇 dalvik opcode
  • 3 篇 n-gram
  • 3 篇 android
  • 3 篇 malware detectio...
  • 2 篇 android malware
  • 2 篇 static analysis
  • 2 篇 malware
  • 1 篇 cyber security
  • 1 篇 gans
  • 1 篇 support vector m...
  • 1 篇 f-classification
  • 1 篇 deep learning
  • 1 篇 catboost
  • 1 篇 anti-static anal...
  • 1 篇 support vector m...
  • 1 篇 xgboost
  • 1 篇 cnn
  • 1 篇 sparse bayesian ...
  • 1 篇 evasive malware
  • 1 篇 feature extracti...

机构

  • 1 篇 changchun univ s...
  • 1 篇 department of ce...
  • 1 篇 jilin prov key l...
  • 1 篇 yildiz tekn univ...
  • 1 篇 the school of cy...
  • 1 篇 changchun univ s...
  • 1 篇 department of co...
  • 1 篇 chengdu univ inf...

作者

  • 1 篇 ning liu
  • 1 篇 bai hongpeng
  • 1 篇 zhao yang
  • 1 篇 yavuz a. gokhan
  • 1 篇 gadilohar pragat
  • 1 篇 zhang hang
  • 1 篇 zhang shibin
  • 1 篇 gan jianchao
  • 1 篇 liu ning
  • 1 篇 ye qing
  • 1 篇 di xiaoqiang
  • 1 篇 bulut irfan
  • 1 篇 yang chen
  • 1 篇 aygun r. can
  • 1 篇 min yang
  • 1 篇 tomar deepak sin...
  • 1 篇 yang min
  • 1 篇 dusun burak
  • 1 篇 shibin zhang
  • 1 篇 xie nannan

语言

  • 4 篇 英文
  • 1 篇 土耳其文
检索条件"主题词=Dalvik opcode"
5 条 记 录,以下是1-10 订阅
排序:
Integrating CNN and XGBoost with Synthetic Samples for Advanced Android Malware Detection  15
Integrating CNN and XGBoost with Synthetic Samples for Advan...
收藏 引用
15th International Conference on Computing Communication and Networking Technologies, ICCCNT 2024
作者: Gadilohar, Pragat Tomar, Deepak Singh Dehalwar, Vasudev Sharma, Yogesh Kumar Department of Centre for Artificial Intelligence Bhopal India Department of Computer Science & Engineering Bhopal India
The ubiquitous presence of Android smartphones exposes users to an ever-expanding arsenal of malware threats. Existing detection methods often struggle with false positives and limited adaptability to emerging threats... 详细信息
来源: 评论
FAMD: A Fast Multifeature Android Malware Detection Framework, Design, and Implementation
收藏 引用
IEEE ACCESS 2020年 8卷 194729-194740页
作者: Bai, Hongpeng Xie, Nannan Di, Xiaoqiang Ye, Qing Changchun Univ Sci & Technol Sch Comp Sci & Technol Changchun 130022 Peoples R China Jilin Prov Key Lab Network & Informat Secur Changchun 130022 Peoples R China Changchun Univ Sci & Technol Informat Ctr Changchun 130022 Peoples R China
With Androids dominant position within the current smartphone OS, increasing number of malware applications pose a great threat to user privacy and security. Classification algorithms that use a single feature usually... 详细信息
来源: 评论
Combat Mobile Malware via N-gram Based Deep Learning  26
Combat Mobile Malware via N-gram Based Deep Learning
收藏 引用
26th IEEE Signal Processing and Communications Applications Conference (SIU)
作者: Dusun, Burak Bulut, Irfan Aygun, R. Can Yavuz, A. Gokhan Yildiz Tekn Univ Bilgisayar Muhendisligi Istanbul Turkey
Today, mobile devices are beginning to be used in every aspect of life. In addition to being able to perform financial transactions such as banking and shopping, mobile devices can also store personal information such... 详细信息
来源: 评论
Detection of Android Applications with Malicious Behavior Based on Sparse Bayesian Learning Algorithm  4th
Detection of Android Applications with Malicious Behavior Ba...
收藏 引用
4th International Conference on Cloud Computing and Security (ICCCS)
作者: Liu, Ning Yang, Min Zhang, Hang Yang, Chen Zhao, Yang Gan, Jianchao Zhang, Shibin Chengdu Univ Informat Technol Sch Cybersecur Chengdu Sichuan Peoples R China
Android mobile devices are widely used in recent years. Due to the openness of Android, applications with malicious behavior have more opportunities to get confidential information, which can cause property damage. Mo... 详细信息
来源: 评论
Detecting Applications with Malicious Behavior in Android Device Based on GA and SVM
Detecting Applications with Malicious Behavior in Android De...
收藏 引用
2017 2nd International Conference on Electrical, Control and Automation Engineering (ECAE 2017)
作者: Ning Liu Min Yang Shibin Zhang The School of Cybersecurity Chengdu University of Information Technology
In recent years, mobile technology and mobile-device have been rapidly developed. Since mobile devices collect and transmit large amounts of private information about users, malicious applications will pose a signific... 详细信息
来源: 评论